A 7 GHz compact transimpedance amplifier TIA in CMOS 0.18 µm technology

  • Jawdat Abu-TahaEmail author
  • Metin Yazgi


This paper describes a compact transimpedance amplifier (TIA). Based on the principle of negative impedance (NI) circuit, the proposed TIA provides wide bandwidth and low noise. The schematics and characteristics of NI circuit have been explained. The inductor behavior is synthesized by gyrator-C circuit. The TIA is implemented in 180 nm RF MOS transistors in a HV CMOS technology with 1.8 V supply voltage technology. It reaches −3 dB bandwidth of 7 GHz and transimpedance gain of 54.3 dBΩ in the presence of a 50 fF photodiode capacitance. The simulated input referred noise current spectral density is \(5.9\;{\text{pA/}}\sqrt {\text{Hz}}\). The power consumption is 29 mW. The TIA occupies \(230\;\upmu {\text{m}} \times 45\;\upmu {\text{m}}\) of area.


Transimpedance amplifier (TIA) Negative impedance (NI) circuit Active inductor (AI) Input-referred noise \(\left( {\overline{{I_{in}^{2} }} } \right)\) Bandwidth extension 


  1. 1.
    Park, S. M., & Yoo, H.-J. (2004). 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications. IEEE Journal of Solid-State Circuits, 39(1), 112–121.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Lee, H., & Mok, P. K. T. (2003). Active-feedback frequency-compensation technique for low-power multistage amplifiers. IEEE Journal of Solid-State Circuits, 38(3), 511–520.CrossRefGoogle Scholar
  3. 3.
    Jungwon, H., Booyoung, C., Mikyung, S., Jisook, Y., Dongmyung, L., Taewook, K., et al. (2010). A 20-Gb/s transformer-based current-mode optical receiver in 0.13 µm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(5), 348–352.CrossRefGoogle Scholar
  4. 4.
    Jin, J.-D., & Hsu, S. S. H. (2008). 40-Gb/s transimpedance amplifier in 0.18 µm CMOS technology. IEEE Journal of Solid-State Circuits, 43(6), 1449–1457.CrossRefGoogle Scholar
  5. 5.
    Taghavi, M.H., Belostotski, L., & Haslett, J.W. (2012) A bandwidth enhancement technique for CMOS TIAs driven by large photodiodes. In 2012 IEEE 10th international on new circuits and systems conference (NEWCAS) (pp. 433–436).Google Scholar
  6. 6.
    Momeni, O., Hashemi, H., & Afshari, E. (2010). A 10-Gb/s Inductorless Transimpedance Amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(12), 926–930.CrossRefGoogle Scholar
  7. 7.
    Sung Min, P. & Toumazou, C. (2000). A packaged low-noise high-speed regulated cascode transimpedance amplifier using a 0.6 µm N-well CMOS technology. In Proceedings of the 26rd european solid-state circuits conference, 2000. ESSCIRC ‘00 (pp. 431–434).Google Scholar
  8. 8.
    Jaeseo, L., Seong-Jun, S. Sung Min, P., Choong-Mo, N., Young-Se, K., & Hoi-Jun, Y. (2002). A multichip on oxide of 1 Gb/s 80 dB fully-differential CMOS transimpedance amplifier for optical interconnect applications In Digest of technical papers 2002 IEEE international solid-state circuits conference, 2002 (ISSCC 2002) (Vol. 441, pp. 80–447).Google Scholar
  9. 9.
    Zand, B., Khoman, P., Johns, D.A. (2001) A transimpedance amplifier with DC-coupled differential photodiode current sensing for wireless optical communications. In 2001 IEEE conference on custom integrated circuits (pp. 455–458).Google Scholar
  10. 10.
    Razavi, B. (2012). Design of integrated circuits for optical communications. New York: Wiley.Google Scholar
  11. 11.
    Wu, C.-H., Lee, C.-H., Chen., W.-S., & Liu., S.-I. (2005). CMOS wideband amplifiers using multiple inductive-series peaking technique. IEEE Journal of Solid-State Circuits, 40(2), 548–552.CrossRefGoogle Scholar
  12. 12.
    Thanachayanont, A., & Payne, A. (1996). VHF CMOS integrated active inductor. Electron Letters, 32(11), 999–1000.CrossRefGoogle Scholar
  13. 13.
    Yue, W., Xiaohui, D., Ismail, M., & Olsson, H. (2003). RF bandpass filter design based on CMOS active inductors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(12), 942–949.CrossRefGoogle Scholar
  14. 14.
    Zhiqiang, G., Mingyan, Y., Yizheng, Y., Jianguo, M. (2005). Wide tuning range of a CMOS RF bandpass filter for wireless applications. In 2005 IEEE conference on electron devices and solid-state circuits (pp. 53–56).Google Scholar
  15. 15.
    Sae-Ngow, S. & Thanachayanont, A. (2003). A low-voltage, wide dynamic range CMOS floating active inductor. In TENCON 2003: conference on convergent technologies for the asia-pacific region (Vol. 1464, pp. 1460–1463).Google Scholar
  16. 16.
    Thanachayanont, A. (2002). CMOS transistor-only active inductor for IF/RF applications. In IEEE international conference on industrial technology, 2002 (IEEE ICIT ‘02) (Vol. 1202, pp. 1209–1212.Google Scholar
  17. 17.
    Allidina, K. & Mirabbasi, S. (2006). A widely tunable active RF filter topology. In Proceedings of the 2006 IEEE international symposium on circuits and systems, 2006 (ISCAS 2006)Google Scholar
  18. 18.
    Akbari-Dilmaghani, R., Payne, A., & Toumazou, C. (1998). A high Q RF CMOS differential active inductor. In 1998 IEEE international conference on electronics, circuits and systems (Vol. 153, pp. 157–160).Google Scholar
  19. 19.
    Thanachayanont, A., & Payne, A. (2000). CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceedings-Circuits, Devices and Systems, 147(1), 42–48.CrossRefGoogle Scholar
  20. 20.
    Grozing, M., Pascht, A., & Berroth, M. (2001). A 2.5 V CMOS differential active inductor with tunable L and Q for frequencies up to 5 GHz. In 2001 IEEE MTT-S international microwave symposium digest (Vol. 571, pp. 575–578).Google Scholar
  21. 21.
    Xu, Z., Huang, B., & Chen, H. (2009). 1-Gb/s zero-pole cancellation CMOS transimpedance amplifier for Gigabit Ethernet applications. Journal of Semiconductors, 30(10), 105005.CrossRefGoogle Scholar
  22. 22.
    Sansen, W. M. C., & Chang, Z. Y. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies. New York: Springer.Google Scholar
  23. 23.
    Yazgi, M. & Abu-Taha, J. (2015). A 6.03 GHz low power transimpedance amplifier TIA in CMOS 0.18 µm technology. International Journal of Emerging Technology and Advanced Engineering (IJETAE), 5(2), 37–46.Google Scholar
  24. 24.
    Aitchison, S. (1985). The intrinsic noise figure of the MESFET distributed amplifier. IEEE Transactions on Microwave Theory and Techniques, 33(6), 460–466.CrossRefGoogle Scholar
  25. 25.
    Liu, L., Zou, J., Ma, N., Zhu, Z., & Yang, Y. (2015). A CMOS transimpedance amplifier with high gain and wide dynamic range for optical fiber sensing system. Optik-International Journal for Light and Electron Optics, 126(15), 1389–1393.CrossRefGoogle Scholar
  26. 26.
    Raut, R. & Ghasemi, O. (2008). A power efficient wide band trans-impedance amplifier in sub-micron CMOS integrated circuit technology. In 2008 Joint 6th international IEEE northeast workshop on circuits and systems and TAISA conference, 2008 (NEWCAS-TAISA 2008) (pp. 113–116).Google Scholar
  27. 27.
    Jun-De, J. & Hsu, S.S.H. (2006). 40-Gb/s transimpedance amplifier in 0.18 µm CMOS technology. In Proceedings of the 32nd european solid-state circuits conference, 2006 (ESSCIRC 2006) (pp. 520–523).Google Scholar
  28. 28.
    Sangirov, J., Ukaegbu, I.A., Nguyen, N.T.H., Lee, T.-W., Cho, M.-H. & Park, H.-H. (2014). Design of small-area transimpedance optical receiver module for optical interconnects. In Advanced Communication Technology (ICACT), 2014 16th International Conference (pp. 283–289). doi: 10.1109/ICACT.2014.6779184.
  29. 29.
    Ngo, T. H., & Park, H. H. (2011). 4.1 mW 50 dBΩ 10 Gbps transimpedance amplifier for optical receivers in 0.13 μm CMOS. Microwave and Optical Technology Letters, 53(2), 448–451.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Lu, Z., Chen, D., Yeo, K.S. (2009). An inductor-less broadband design technique for transimpedance amplifiers. In Proceedings of the 2009 12th international symposium on integrated circuits, 2009 (ISIC ‘09) (pp. 232–235).Google Scholar
  31. 31.
    Seng, C. W., Sern, T.Y., Seng, Y.K. (2013). A low power wideband differential transimpedance amplifier for optical receivers in 0.18 µm CMOS. In 2013 IEEE 11th international new circuits and systems conference (NEWCAS) (pp. 1–4).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical & Electronics EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations