Analog Integrated Circuits and Signal Processing

, Volume 86, Issue 2, pp 275–288 | Cite as

Bandwidth-efficient calibration method for nonlinear errors in M-channel time-interleaved ADCs

Article

Abstract

In order to enhance the effective resolution of time-interleaved analog-to-digital converters (TI-ADCs), both linear and nonlinear channel mismatches should be carefully calibrated. This paper concentrates on a bandwidth-efficient background calibration method for nonlinear errors in M-channel TI-ADCs. It utilizes the least-mean square algorithm as well as a certain degree of oversampling to achieve adaptive mismatch tracking. The calibration performance and computational complexity are investigated and evaluated through behavioral-level simulations. Furthermore, a calibration strategy for narrow-band input signals is proposed and verified as an improvement of the basic calibration structure for such signals.

Keywords

Background Calibration Bandwidth efficient Nonlinear errors M-channel Time-interleaved ADCs 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments and insightful suggestions which helped improving the manuscript.

References

  1. 1.
    Black, W. C., & Hodges, D. A. (1980). Time interleaved converter arrays. IEEE Journal of Solid-State Circuits, SC–15, 1022–1029.CrossRefGoogle Scholar
  2. 2.
    Johansson, H., & Löwenborg, P. (2002). Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters. IEEE Transactions on Signal Processing, 50(11), 2757–2767.CrossRefGoogle Scholar
  3. 3.
    C. Vogel, S. Saleem, and S. Mendel. Adaptive blind compensation of gain and timing mismatches in M-channel time-interleaved ADCs. In Proceedings of IEEE Internatinal Conference on. Electronics, Circuits and Systems, pages 49–52, Aug. 2008.Google Scholar
  4. 4.
    Vogel, C., & Mendel, S. (2009). A flexible and scalable structure to compensate frequency response mismatches in time-interleaved ADCs. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(11), 2463–2475.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pillai, A. K. M., & Johansson, H. (2013). Efficient signal reconstruction scheme for M-channel time-interleaved ADCs. Analog Integrated Circuits and Signal Processing, 77(2), 113–122.CrossRefGoogle Scholar
  6. 6.
    Saleem, S., & Vogel, C. (2011). Adaptive blind background calibration of polynomial-represented frequency response mismatches in a two-channel time-interleaved ADC. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6), 1300–1310.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Johansson, H. (2009). A polynomial-based time-varying filter structure for the compensation of frequency-response mismatch errors in time-interleaved ADCs. IEEE Journal of Selected Topics in Signal Processing, 3, 384–396.CrossRefGoogle Scholar
  8. 8.
    Singh, S., et al. (2015). Digital correction of frequency response mismatches in 2-channel time-interleaved ADCs using adaptive I/Q signal processing. Analog Integrated Circuits and Signal Processing, 82(3), 543–555.CrossRefGoogle Scholar
  9. 9.
    Satarzadeh, P., Levy, B . C., & Hurst, P . J. (2009). Adaptive semi-blind calibration of bandwidth mismatch for two-channel time-interleaved ADCs. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 2075–2088.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tsui, K. M., & Chan, S. C. (2011). New iterative framework for frequency response mismatch correction in time-interleaved ADCs: Design and performance analysis. IEEE Transactions on Instrumentation and Measurement, 60(12), 3792–3805.CrossRefGoogle Scholar
  11. 11.
    C. Vogel and H. Johansson. Time-interleaved analog-to-digital converters: status and future directions. In Proceedings of IEEE International Symposium on Circuits and Systems, pages 3386–3389, May 2006.Google Scholar
  12. 12.
    C. Vogel and G. Kubin. Analysis and compensation of nonlinearity mismatches in time-interleaved ADC arrays. In Proceedings of IEEE International Symposium on Circuits and Systems, pages I593–I596, May 2004.Google Scholar
  13. 13.
    Y. Wang et al. Estimation method for nonlinearity mismatch in time-interleaved analog-to-digital converters. In Proceedings of IEEE International Symposium on Circuits and Systems, pages 2109–2112, Jun. 2014.Google Scholar
  14. 14.
    Wang, Y., et al. (2015). Digital estimation and compensation method for nonlinearity mismatches in time-interleaved analog-to-digital converters. Digital Signal Processing, 41, 130–141.MathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Asami et al. Technique to improve the performance of time-interleaved A-D converters with mismatches of non-linearity. In Proceedings of Asian Test Symposium, pages 105–110, Nov. 2008.Google Scholar
  16. 16.
    Y. Wang, H. Johansson, H. Xu, and Z. Sun. Blind calibration of nonlinearity mismatch errors in two-channel time-interleaved ADCs. In Proceedings of IEEE International Conference on Electronics, Circuits and Systems, pages 582–585, Dec. 2014.Google Scholar
  17. 17.
    Wang, Y., Johansson, H., & Xu, H. (2015). Adaptive background estimation for static nonlinearity mismatches in two-channel TIADCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(3), 226–230.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, Y., Johansson, H., Xu, H., & Sun, Z. (2015). Joint blind calibration for mixed mismatches in two-channel time-interleaved ADCs. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1508–1517.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kun S. and A. Redfern. Blind volterra system linearization with applications to post compensation of ADC nonlinearities. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3581–3584, Mar. 2012.Google Scholar
  20. 20.
    Hotz, M., & Vogel, C. (2014). Linearization of time-varying nonlinear systems using a modified linear iterative method. IEEE Transactions on Signal Processing, 62(10), 2566–2579.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vogel, C., & Kubin, G. (2005). Modeling of time-interleaved ADCs with nonlinear hybrid filter banks. AEU-International Journal of Electronics and Communications, 59, 288–296.CrossRefGoogle Scholar
  22. 22.
    Kerzerho, V., et al. (2011). Fast digital post-processing technique for integral nonlinearity correction of analog-to-digital converters: Validation on a 12-bit folding-and-interpolating analog-to-digital converter. IEEE Transactions on Instrumentation and Measurement, 60, 768–775.CrossRefGoogle Scholar
  23. 23.
    Brooks, L., & Lee, H. (2007). A zero-crossing-based 8-bit 200 MS/s pipelined ADC. IEEE Journal of Solid-State Circuits, 42(12), 2677–2687.CrossRefGoogle Scholar
  24. 24.
    Attivissimo, F., Giaquinto, N., Marracci, M., & Tellini, B. (2013). Effect and compensation of adc nonlinearity on magnetic accommodation measurements. Measurement, 46(3), 1340–1348.CrossRefGoogle Scholar
  25. 25.
    Adamo, F., Attivissimo, F., Giaquinto, N., & Savino, M. (2002). Measuring the static characteristic of dithered A/D converters. Measurement, 32(4), 231–239.CrossRefGoogle Scholar
  26. 26.
    Tsimbinos, J., & Lever, K. V. (2001). Nonlinear system compensation based on ortogonal polynomial inverses. IEEE Transactions on Circuits and Systems I, Reg. Papers, 48(4), 406–417.CrossRefMATHGoogle Scholar
  27. 27.
    Saramäki, T. (1993). Finite impulse response filter design. In S. K. Mitra & J. F. Kaiser (Eds.), Handbook for Digital Signal Processing (Vol. 4, pp. 155–277). New York: Wiley.Google Scholar
  28. 28.
    Mirri, D., et al. (2002). A modified volterra series approach for nonlinear dynamic systems modeling. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(8), 1118–1128.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yinan Wang
    • 1
  • Håkan Johansson
    • 2
  • Hui Xu
    • 1
  • Jietao Diao
    • 1
  1. 1.College of Electronic Science and EngineeringNational University of Defense TechnologyChangshaChina
  2. 2.Division of Communication Systems, Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations