Design of a 12.8 ENOB, 1 kS/s pipelined SAR ADC in 0.35-μm CMOS

  • Kairang Chen
  • Prakash Harikumar
  • Atila Alvandpour
Article

Abstract

This paper presents a 15-bit, two-stage pipelined successive approximation register analog-to-digital converter (ADC) suitable for low-power, cost-effective sensor readout circuits. The use of aggressive gain reduction in the residue amplifier combined with a suitable capacitive array DAC topology in the second stage simplifies the design of the operational transconductance amplifier while eliminating excessive capacitive load and consequent power consumption. An elaborate power consumption analysis of the entire ADC was performed to determine the number of bits in each stage of the pipeline. Choice of a segmented capacitive array DAC and attenuation capacitor-based DAC for the first and second stages respectively enable significant reduction in power consumption and area. Fabricated in a low-cost 0.35-μm CMOS process, the prototype ADC achieves a peak SNDR of 78.9 dB corresponding to an effective number of bits (ENOB) of 12.8 bits at a sampling frequency of 1 kS/s and provides an FoM of 157.6 dB. Without any form of calibration, the ADC maintains an ENOB >12.1 bits upto the Nyquist bandwidth of 500 Hz while consuming 6.7 μW. Core area of the ADC is 0.679 mm2.

Keywords

Pipelined SAR ADC High resolution OTA Capacitive DAC 

References

  1. 1.
    Harpe, P., Cantatore, E., & van Roermund, A. (2014). An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. ISSCC Digest of Technical Papers (pp. 194–195).Google Scholar
  2. 2.
    Zhang, D., Bhide, A., & Alvandpour, A. (2012). A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE Jounal of Solid-State Circuits, 47(7), 1585–1593.CrossRefGoogle Scholar
  3. 3.
    Liu, W., Huang, P., & Chiu, Y. (2010). A 12b 22.5/45MS/s 3.0 mW 0.059 \({\rm mm}^2\) CMOS SAR ADC achieving over 90 dB SFDR. ISSCC Digest of Technical Papers (pp. 380–381).Google Scholar
  4. 4.
    Morie, T., Miki, T., Matsukawa, K., Bando, Y., Okumoto, T., Obata, K., et al. (2013). A 71 dB-SNDR 50 MS/s 4.2 mW CMOS SAR ADC by SNR enhancement techniques utilizing noise. ISSCC Digest of Technical Papers (pp. 272–273).Google Scholar
  5. 5.
    Kapusta, R., Shen, J., Decker, S., Li, H., & Ibaragi, E. (2013). A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS. ISSCC Digest of Technical Papers (pp. 472–473).Google Scholar
  6. 6.
    Lee, C., & Flynn, M. (2011). A SAR-assisted two-stage pipeline ADC. IEEE Journal of Solid-State Circuits, 46(4), 859–869.CrossRefGoogle Scholar
  7. 7.
    Lee, H.-Y., Lee, B., & Moon, U. K. (2012). A 31.3fJ/conversion-step 70.4 dB SNDR 30 MS/s 1.2 V two-step pipelined ADC in 0.13 μm CMOS. ISSCC Digest of Technical Papers (pp. 474–476).Google Scholar
  8. 8.
    Li, J., & Maloberti, F. (2002). Pipeline of successive approximation converters with optimum power merit factor. In Proceedings of international conference on electronics, circuits and system (ICECS) (pp. 17–20).Google Scholar
  9. 9.
    Lewis, S. H. (1992). Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications. IEEE Transactions on Circuits and Systems-II, 39(8), 516–523.CrossRefGoogle Scholar
  10. 10.
    Yang, W., Kelly, D., Mehr, I., Sayuk, M., & Singer, L. (2001). A 3-V 340-mW 14-b 75-M sample/s CMOS ADC with 85-dB SFDR at Nyquist input. IEEE Journal of Solid-State Circuits, 36(12), 1931–1936.CrossRefGoogle Scholar
  11. 11.
    Wakimoto, T., Li, H., & Murase, K. (2011). Statistical analysis on the effect of capacitance mismatch in a high-resolution successive-approximation ADC. IEEE Transactions on Electrical and Electronic Engineering, 6(S1), S89–S93.CrossRefGoogle Scholar
  12. 12.
    Zhang, D., Svensson, C., & Alvandpour, A. (2011). Power consumption bounds for SAR ADCs. In Proceedings of European conference on circuit theory and design (ECCTD) (pp. 556–559).Google Scholar
  13. 13.
    Zhang, D. (2014). Ultra-low-power analog-to-digital converters for medical applications. Ph.D. dissertation, Linköping University, Sweden, pp. 11–16.Google Scholar
  14. 14.
    Zhang, D., & Alvandpour, A. (2012). A 3-nW 9.1-ENOB SAR ADC at 0.7 V and 1 kS/s. In Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC) (pp. 369–372).Google Scholar
  15. 15.
    Saberi, M., & Lotfi, R. (2014). Segmented architecture for successive approximation analog-to-digital converters. IEEE Transaction on VLSI System, 22(3), 593–606.Google Scholar
  16. 16.
    Saberi, M., Lotfi, R., Mafinezhad, K., & Serdijn, W. (2011). Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs. IEEE Transactions on Circuits System I, 58(8), 1736–1748.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sundstrom, T., Murmann, B., & Svensson, C. (2009). Power dissipation bounds for high-speed Nyquist analog-to-digital converters. IEEE Transactions on Circuits System I, 56(3), 509–518.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Abo, A., & Gray, P. (1999). A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits, 34(5), 599–606.CrossRefGoogle Scholar
  19. 19.
    Scott, M., Boser, B., & Pister, K. (2003). An ultralow-energy ADC for smart dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129.CrossRefGoogle Scholar
  20. 20.
    Bardsley, S., Dillon, C., Kummaraguntla, R., Lane, C., Ali, A., Rigsbee, B., et al. (2006). A 100-dB SFDR 80-MSPS 14-Bit 0.35-μm BiCMOS pipeline ADC. IEEE Journal of Solid-State Circuits, 41(9), 2144–2153.CrossRefGoogle Scholar
  21. 21.
    Yuan, J., Fung, S. W., Chan, K. Y., & Xu, R. (2012). A 12-bit 20 MS/s 56.3 mW pipelined ADC with interpolation-based nonlinear calibration. IEEE Transactions on Circuits System I, 59(3), 555–565.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of Solid-State Circuits, 44(2), 458–472.CrossRefGoogle Scholar
  23. 23.
    Cannillo, F., Prefasi, E., Hernandez, L., Pun, E., Yazicioglu, F., & Van Hoof, C. (2011). 1.4V 13 μ modulator with dual-slope quantizer and PWM DAC for biopotential signal acquisition. In Proceedings of IEEE European solid-state circuits conference (ESSCIRC) (pp. 267–270).Google Scholar
  24. 24.
    Yeknami, A. F., & Alvandpour, A. (2013). A 2.1 μ modulator for medical implant devices in 65 nm CMOS. Analog Integrated Circuits and Signal Processing, 77(1), 69–78.CrossRefGoogle Scholar
  25. 25.
    Devarajan, S., Singer, L., Kelly, D., Decker, S., Kamath, A., & Wilkins, P. (2009). A 16b 125MS/s 385mW 78.7dB SNR CMOS pipeline ADC. ISSCC Digest of Technical Papers (pp. 86–87, 87a).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kairang Chen
    • 1
  • Prakash Harikumar
    • 1
  • Atila Alvandpour
    • 1
  1. 1.Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations