Advertisement

A precision comparator design with a new foreground offset calibration technique

  • Islam T. Abougindia
  • Ismail Cevik
  • Fadi N. Zghoul
  • Suat U. Ay
Article

Abstract

This paper presents a new digitally-assisted analog foreground comparator offset calibration technique that is fast, compact, low-power, precise, and linear. Non-linear input referred DC offset voltage of a comparator used in an analog-to-digital converter (ADC) is considered as the most important factor that degrades performance, especially for ADC architectures that utilize multiple comparators, such as flash ADCs. This paper discusses the causes of various types of offsets as well as techniques for cancelling them in dynamic latched comparators. Both background and foreground offset calibration techniques used in dynamic comparators are explained. Three popular circuit implementation approaches for foreground calibration are reviewed. A novel coarse–fine calibration (CFC) technique is introduced presenting concept of operation and its effectiveness over other available analog foreground offset calibration techniques. Simulation and measurement results of dynamic comparators that were fabricated in 2P3M, 3.3 V, 0.35 μm CMOS process are presented. It was shown that the proposed CFC technique achieves better performance than other digitally-assisted analog calibration techniques without requiring high-resolution (>8-bit) trimming digital-to-analog converters while providing compact, high-speed, low-power, and linear offset correction over the full offset range of up to ±100 mV.

Keywords

Comparator offset Offset correction Analog–digital converter Comparator precision Offset trimming Coarse–fine calibration Offset correction techniques 

References

  1. 1.
    Kinget, P. & Steyaert, M. (1996). Impact of transistor mismatch on the speed-accuracy-power trade-off of analog CMOS circuits. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (pp. 333–336).Google Scholar
  2. 2.
    Pelgrom, M. J. M., Duinmaijer, A. C. J., & Welbers, A. P. G. (1989). Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits, 24(5), 1433–1439.CrossRefGoogle Scholar
  3. 3.
    Pelgrom, M. J. M., Tuinhout, H. P. & Vertregt, M. (1998). Transistor matching in analog CMOS applications. In Proceedings of the IEEE International Electron Devices Meeting (IEDM) (pp. 915–918).Google Scholar
  4. 4.
    Choi, M., & Abidi, A. A. (2001). A 6-b 1.3-Gsample/s A/D converter in 0.35-μm CMOS. IEEE Journal of Solid-State Circuits, 36(12), 1847–1858.CrossRefGoogle Scholar
  5. 5.
    Okada, H., Hashimoto, Y., Sakata, K., Tsukada, T. & Ishibashi, K. (2003). Offset calibrating comparator array for 1.2-V, 6bit, 4-Gsample/s flash ADCs using 0.13/spl mu/m generic CMOS technology. In Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (pp. 711–714).Google Scholar
  6. 6.
    Mehr, I., & Dalton, D. (1999). A 500-MSample/s, 6-bit Nyquist-rate ADC for disk-drive read-channel applications. IEEE Journal of Solid-State Circuits, 34(7), 912–920.CrossRefGoogle Scholar
  7. 7.
    Enz, C. C. & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. In Proceedings of the IEEE (vol 84(11), pp. 1584–1614).Google Scholar
  8. 8.
    Hafiz, O. A., Wang, X., Hurst, P. J., & Lewis, S. H. (2013). Immediate calibration of operational amplifier gain error in pipelined ADCs using extended correlated double sampling. IEEE Journal of Solid-State Circuits, 48(3), 749–759.CrossRefGoogle Scholar
  9. 9.
    Huang, C.-C., & Wu, J.-T. (2005). A background comparator calibration technique for flash analog-to-digital converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(9), 1732–1740.CrossRefGoogle Scholar
  10. 10.
    Wong, Y. L., Cohen, M. H., & Abshire, P. A. (2005). A floating-gate comparator with automatic offset adaptation for 10-bit data conversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1316–1326.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Jeon, H. J., Kim, Y.-B. & Choi. M. (2011). Offset voltage analysis of dynamic latched comparator. In Proceedings of the IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4).Google Scholar
  12. 12.
    Nikoozadeh, A., & Murmann, B. (2006). An analysis of latch comparator offset due to load capacitor mismatch. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(12), 1398–1402.CrossRefGoogle Scholar
  13. 13.
    Sarpeshkar, R., Wyatt, J. L, Jr, Lu, N. C., & Gerber, P. D. (1991). Mismatch sensitivity of a simultaneously latched CMOS sense amplifier. IEEE Journal of Solid-State Circuits, 26(10), 1413–1422.CrossRefGoogle Scholar
  14. 14.
    Donovan, C., & Flynn, M. P. (2002). A “digital” 6-bit ADC in 0.25-μm CMOS. IEEE Journal of Solid-State Circuits, 37(3), 432–437.CrossRefGoogle Scholar
  15. 15.
    Van der Plas, G., Decoutere, S. & Donnay, S. (2006). A 0.16pJ/Conversion-Step 2.5mW 1.25GS/s 4b ADC in a 90 nm Digital CMOS Process. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) (p. 2310).Google Scholar
  16. 16.
    Shu, Y.-S. (2012). A 6b 3GS/s 11mW fully dynamic flash ADC in 40 nm CMOS with reduced number of comparators. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 26–27).Google Scholar
  17. 17.
    Xu, Y., Belostotski, L. & Haslett, J. W. (2011). Offset-corrected 5 GHz CMOS dynamic comparator using bulk voltage trimming: Design and analysis. In Proceedings of the IEEE 9th International New Circuits and Systems Conference (NEWCAS) (pp. 277–280).Google Scholar
  18. 18.
    Yao, J., Liu, J., & Lee, H. (2010). Bulk voltage trimming offset calibration for high-speed flash ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(2), 110–114.CrossRefGoogle Scholar
  19. 19.
    Verbruggen, B., Wambacq, P., Kuijk, M. & Van der Plas, G. (2008). A 7.6 mW 1.75 GS/s 5 bit flash A/D converter in 90 nm digital CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 14–15).Google Scholar
  20. 20.
    Abougindia, I. T., Cevik, I., Ay, S. U. & Zghoul, F. N. (2013). A fast two-step coarse-fine calibration (CFC) technique for precision comparator design. In Proceedings of the IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 153–156).Google Scholar
  21. 21.
    Chan, C.-H., Zhu, Y., Chio, U.F., Sin, S.-W., Seng-Pan U. & Martins, R. P. (2011). A reconfigurable low-noise dynamic comparator with offset calibration in 90 nm CMOS. In Proceedings of the IEEE Asian Solid State Circuits Conference (A-SSCC) (pp. 233–236.Google Scholar
  22. 22.
    Abbas, M., Furukawa, Y., Komatsu, S., Takahiro, J. Y. & Asada, K. (2010). Clocked comparator for high-speed applications in 65 nm technology. In Proceedings of the IEEE Asian Solid State Circuits Conference (A-SSCC) (pp. 1–4).Google Scholar
  23. 23.
    Ay, S. U. (2011). Boosted readout for CMOS APS pixels. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2205–2208).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Islam T. Abougindia
    • 1
  • Ismail Cevik
    • 1
  • Fadi N. Zghoul
    • 2
  • Suat U. Ay
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of IdahoMoscowUSA
  2. 2.Electrical EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations