Realizations of mutative 4-ports and their applications to memstor simulations

  • İzzet Cem GöknarEmail author
  • Elham Minayi


In this paper, in addition to the universal 4-port mutator circuit introduced earlier with an adder and a subtractor block, two more 4-port mutator circuits, one with plus type (CCII+) and minus type current conveyors (CCII−), the other with a plus type current conveyor (CCII+) and one minus type current follower (CF−) are presented, their port relation matrix and their realization of different memstors are tabulated. How the transfer characteristics of the ideal mutative 4-ports with respect to frequency hold is verified using their transistor level simulations. By terminating properly two ports of the mutative 4-port simulations of a memristor with three different mutators, of a meminductor and of a memcapacitor are presented and compared also with some mutators existing in the literature.


Memristor Mutator Simulation Current conveyor Current follower 


  1. 1.
    Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.CrossRefGoogle Scholar
  2. 2.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.CrossRefGoogle Scholar
  3. 3.
    Goknar, I. C., Oncul, F., & Minayi, E. (2013). New memristor applications: AM, ASK, FSK, and BPSK modulators. IEEE Antennas and Propagation Magazine, 55(2), 304–313.CrossRefGoogle Scholar
  4. 4.
    Hyongsuk, K., Sah, M. P., Changju, Y., Seongik, C., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hyongsuk, K., Sah, M. P., Changju, Y., & Chua, L. O. (2010). Memristor-based multilevel memory. In 12th international workshop on cellular nanoscale networks and their applications (CNNA), 3–5 February 2010, pp. 1–6.Google Scholar
  6. 6.
    Benderli, S., & Wey, T. A. (2009). On PSPICE macromodelling of TiO2 memristors. Electronics Letters, 45(7), 377–379.CrossRefGoogle Scholar
  7. 7.
    Biolek, Z., Biolek, D., & Biolková, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18(2), 210–214.Google Scholar
  8. 8.
    Shin, S., & Kang, S.-M. (2010). Compact models for memristors based on charge–flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 590–598.CrossRefGoogle Scholar
  9. 9.
    Rák, A., & Cserey, G. (2010). Macromodeling of the memristor in PSPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 632–636.CrossRefGoogle Scholar
  10. 10.
    Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In European conference on circuit theory and design (ECCTD 2009), 23–27 August 2009, pp. 249, 252.Google Scholar
  11. 11.
    Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 24(4), 400–408.CrossRefzbMATHGoogle Scholar
  12. 12.
    Pershin, Y. V., & Di Ventra, M. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518.CrossRefGoogle Scholar
  13. 13.
    Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244.CrossRefGoogle Scholar
  14. 14.
    Biolek, D., & Biolkova, V. (2010). Mutator for transforming memristor into memcapacitor. Electronics Letters, 46(21), 1428–1429.CrossRefGoogle Scholar
  15. 15.
    Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244.CrossRefGoogle Scholar
  16. 16.
    Biolek, D., Biolkova, V., & Kolka, Z. (2010). Mutators simulating memcapacitors and meminductors. In IEEE Asia Pacific conference on circuits and systems (APCCAS), 6–9 December 2010, pp. 800, 803.Google Scholar
  17. 17.
    Biolek, D., Bajer, J., Biolkova, V., & Kolka, Z. (2011). Mutators for transforming nonlinear resistor into memristor. In Proceedings of the ECCTD ‘11, 29–31 August 2011, pp. 488–491.Google Scholar
  18. 18.
    Minaei, S., Goknar, I. C., Yildiz, M., & Yuce, E. Memstor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics. doi: 10.1080/00207217.2014.942890.
  19. 19.
    Yuce, E., & Minaei, S. (2009). On the realization of simulated inductors with reduced parasitic impedance effects. Circuits, Systems and Signal Processing, 28(3), 451–465.CrossRefGoogle Scholar
  20. 20.
    Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30, 661–675.CrossRefzbMATHGoogle Scholar
  21. 21.
    Sedra, S., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.CrossRefGoogle Scholar
  22. 22.
    Yildiz, M., Minaei, S., & Ozoguz, S. Linearly weighted classifier circuit. In Joint IEEE north-east workshop on circuits and systems and TAISA conference NEWCAS-TAISA ‘09, 28 June–1 July 2009, pp. 1–4.Google Scholar
  23. 23.
    Minayi, E., & Goknar, I. C. (2013). Realization of a 4-port generalized mutator and its application to memstor 1 simulations. In 8th international conference on electrical and electronics engineering (ELECO), 28–30 November 2013, pp. 5–8.Google Scholar
  24. 24.
    Minayi, E. (2014). Applications of 4-port generalized mutators to memstor simulations. MSc thesis, Institute of Technology, Dogus University.Google Scholar
  25. 25.
  26. 26.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communications EngineeringDogus University AcibademIstanbulTurkey

Personalised recommendations