Analog Integrated Circuits and Signal Processing

, Volume 77, Issue 3, pp 333–343 | Cite as

Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes

  • Marco CarminatiEmail author
  • Giorgio Ferrari
  • Aleksandar P. Ivanov
  • Tim Albrecht
  • Marco Sampietro


Solid-state nanopores have been gaining popularity in nano-biotechnology for single molecule detection, in particular for label-free high-throughput DNA sequencing. In order to address the improvement of the resolution/speed trade-off critical in this application, here we present a new two-channel current amplifier tailored for solid-state nanopore devices with integrated tunneling electrodes. The simultaneous detection of ion and tunneling currents provides enhanced molecule tracking capability. We describe the system design starting from a detailed noise analysis and device modeling, highlighting the detrimental role of the conductive silicon substrate and of all the stray capacitive couplings between the electrodes. Given the high input capacitance (0.1–1 nF), the input voltage noise has been carefully minimized choosing a discrete couple of matched low-noise JFETs as input stage, thus achieving an equivalent input noise of 1.5 nV/√Hz (corresponding to a current noise floor of 15 fA/√Hz at 10 kHz). Low-noise performance (11 pA rms noise integrated over a 75 kHz bandwidth) is preserved at a wide bandwidth (300 kHz) and high gain (100 MΩ) thanks to the adoption of an improved integrator/differentiator cascade topology. Furthermore, along with biasing networks and selectable low-pass filters, an AC-coupled channel providing additional gain has been introduced in order to “zoom” in the current signature during pore blockade events. Together with an experimental characterization of the system (and comparison with the noise performance of other instruments), the platform is validated by demonstrating the detection of λ-DNA with 20 nm pores.


Low-noise current amplifier Integrator/differentiator topology Nanopore parasitics Modeling DNA detection 



Fondazione CARIPLO and The Royal Society are gratefully acknowledged for partial financial support. Fatma Dogan and Thomas Gibb are also thanked for fruitful discussions.


  1. 1.
    Martin, C. R., & Siwy, Z. S. (2007). Learning nature’s way: Biosensing with synthetic nanopores. Science, 317, 331–332.CrossRefGoogle Scholar
  2. 2.
    Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2, 209–215.CrossRefGoogle Scholar
  3. 3.
    Zhang, B., Galusha, G., Shiozawa, P. G., Wang, G., Bergren, A. J., Johns, R. M., et al. (2007). A bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Analytical Chemistry, 79, 4778–4787.CrossRefGoogle Scholar
  4. 4.
    DeBlois, R. W., & Bean, C. P. (1970). Counting and sizing of submicron particles by the resistive pulse technique. Review of Scientific Instruments, 41(7), 909–915.CrossRefGoogle Scholar
  5. 5.
    Fraikin, J., Teesalu, T., McKenney, C. M., Ruoslaht, E., & Cleland, A. N. (2011). A high-throughput label-free nanoparticle analyser. Nature Nanotechnology, 6, 308–313.CrossRefGoogle Scholar
  6. 6.
    Venkatesan, B. M., & Bashir, R. (2011). Nanopore sensors for nucleic acid analysis. Nature Nanotechnology, 6, 615–624.CrossRefGoogle Scholar
  7. 7.
    Wanunu, M. (2012). Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 9(2), 125–158.CrossRefGoogle Scholar
  8. 8.
    Peng, H., & Ling, X. S. (2009). Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 20, 185101–185108.CrossRefGoogle Scholar
  9. 9.
    Chen, Z., et al. (2010). DNA translocation through an array of kinked nanopores. Nature Materials, 9, 667–675.CrossRefGoogle Scholar
  10. 10.
    Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., & Akeson, M. (2012). Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnology, 30, 344–348.CrossRefGoogle Scholar
  11. 11.
    Albrecht, T. (2012). Electrochemical tunneling sensors and their potential application. Nature Communications, 3(829), 1–9.MathSciNetGoogle Scholar
  12. 12.
    Huang, S., He, J., Chang, S., Zhang, P., Liang, F., Li, S., et al. (2010). Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotechnology, 5, 868–887.CrossRefGoogle Scholar
  13. 13.
    Ivanov, A. P., Instuli, E., McGilvery, C. M., Baldwin, G., McComb, D. W., Albrecht, T., et al. (2011). DNA tunneling detector embedded in a nanopore. Nano Letters, 11, 279–285.CrossRefGoogle Scholar
  14. 14.
    Smeets, R. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. PNAS, 105(2), 417–421.CrossRefGoogle Scholar
  15. 15.
    Dimitrov, V., Mirsaidov, U., Wang, D., Sorsch, T., Mansfield, W., Miner, J., et al. (2010). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21, 065502–065511.CrossRefGoogle Scholar
  16. 16.
    Carminati, M., Vergani, M., Ferrari, G., Caranzi, L., Caironi, M., & Sampietro, M. (2012). Accuracy and resolution limits in quartz and silicon substrates with microelectrodes for electrochemical biosensors. Sensors and Actuators B, 172, 168–175.CrossRefGoogle Scholar
  17. 17.
    Timp, W., Mirsaidov, U., Wang, D., Comer, J., Aksimentiev, A., & Timp, G. (2010). Nanopore sequencing: Electrical measurements of the code of life. IEEE Transactions on Nanotechnology, 9(3), 281–294.CrossRefGoogle Scholar
  18. 18.
    Meller, A., Nivon, L., & Branton, D. (2001). Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 86, 3435–3438.CrossRefGoogle Scholar
  19. 19.
    Crescentini, M., Bennati, M., Carminati, M., & Tartagni, M. (2013). Noise limits of CMOS current interfaces for biosensors: A review. IEEE Trans. Biomedical Circuits and Systems (in press).Google Scholar
  20. 20.
    Carminati, M., Ferrari, G., Bianchi, D., & Sampietro, M. (2013). Femtoampere integrated current preamplifier for low noise and wide bandwidth electrochemistry with nanoelectrodes. Electrochimica Acta (in press).Google Scholar
  21. 21.
    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M., & Shepard, K. L. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods, 9, 487–492.CrossRefGoogle Scholar
  22. 22.
    Ciofi, C., Crupi, F., Pace, C., Scandurra, G., & Patanè, M. (2007). A new circuit topology for the realization of very low-noise wide-bandwidth transimpedance amplifier. IEEE Transactions on Instrumentation and Measurement, 56(3), 1626–1631.CrossRefGoogle Scholar
  23. 23.
    Vergani, M., et al. (2012). Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures. IEEE Transaction on Biomedical Circuits and Systems, 6(5), 498–507.CrossRefGoogle Scholar
  24. 24.
    Ayub, M., Ivanov, A., Hong, J., Kuhn, P., Instuli, E., Edel, J. B., et al. (2010). Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. Journal of Physics, 22, 8–454128.Google Scholar
  25. 25.
    Ferrari, G., Farina, M., Guagliardo, F., Carminati, M., & Sampietro, M. (2009). Ultra low noise CMOS current preamplifier from DC to 1 MHz. Electronics Letters, 45, 1278–1280.CrossRefGoogle Scholar
  26. 26.
    Ferrari, G., Gozzini, F., Molari, A., & Sampietro, M. (2009). Transimpedance amplifier for high sensitivity current measurements on nanodevices. IEEE Journal of Solid-State Circuits, 44, 1609–1616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marco Carminati
    • 1
    Email author
  • Giorgio Ferrari
    • 1
  • Aleksandar P. Ivanov
    • 2
  • Tim Albrecht
    • 2
  • Marco Sampietro
    • 1
  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Imperial College LondonLondonUK

Personalised recommendations