Analog Integrated Circuits and Signal Processing

, Volume 77, Issue 3, pp 355–364 | Cite as

Temperature considerations on Hall Effect sensors current-related sensitivity behaviour

  • Maria-Alexandra PaunEmail author
  • Jean-Michel Sallese
  • Maher Kayal


The present paper focuses on evaluating the temperature effects on Hall Effect sensors sensitivity behavior. To this purpose, an analysis of the factors affecting the sensors current-related sensitivity is performed, consisting of several pertinent considerations. An analytical investigation of the carrier concentration temperature dependence including the freeze-out effect influence was performed. This information was subsequently included in accurate prediction of the current-related sensitivity temperature behavior. For a specific CMOS integration process of the Hall sensors, a parabolic curve is obtained for the relative variation of the current-related sensitivity.


Hall Effect sensors Temperature behavior Freeze-out effect Current-related sensitivity Parabolic dependence 



The first author, Maria-Alexandra Paun, wishes to thank the Swiss National Science Foundation (SNSF) from Switzerland for the promotion and encouragement of the scientific research of young doctors, respectively by providing the funding for her postdoctoral fellowship at Cambridge University.


  1. 1.
    Ramsden, E. (2006). Hall-Effect sensors: Theory and applications (2nd ed.). Amsterdam: Elsevier.Google Scholar
  2. 2.
    Manzin, A., Nabaei, V., & Kazakova, O. (2012). Modelling and optimization of submicron Hall sensors for the detection of superparamagnetic beads. Journal of Applied Physics, 111(7), 07E513–07E513-3.Google Scholar
  3. 3.
    Osterberg, F. W., Rizzi, G., Gomez, Zardan, de la Torre, T., Stromberg, M., Stromme, M., et al. (2013). Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors. Biosensors & Bioelectronics, 40(1), 147–152.CrossRefGoogle Scholar
  4. 4.
    Bolshakova, I., Vasilevskii, I., Viererbl, L., Duran, I., Kovalyova, N., Kovarik, K., et al. (2013). Prospects of using in-containing semiconductor materials in magnetic field sensors for thermonuclear reactor magnetic diagnostics. IEEE Transactions on Magnetics, 49(1), 50–53.CrossRefGoogle Scholar
  5. 5.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2013). Comparative study on the performance of five different Hall Effect devices, Sensors, ISSN 1424–8220, 13(2), 2093–2112.Google Scholar
  6. 6.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2013). Hall effect sensors design, integration and behaviour analysis. Journal of Sensors and Actuator Networks, 2(1), 85–97.CrossRefGoogle Scholar
  7. 7.
    Paun, M. A. (2013). Hall cells offset analysis and modeling approaches, PhD thesis, EPFL, Switzerland.Google Scholar
  8. 8.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2010). Geometry influence on Hall effect devices performance. UPB Scientific Bulletin, 72(4), 257–271.Google Scholar
  9. 9.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2011). Geometrical parameters influence on the Hall effect sensors offset and drift. In Proceedings of the 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), (pp. 145–148). Italy: IEEE.Google Scholar
  10. 10.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2012). A specific parameters analysis of CMOS Hall effect sensors with various geometries. In Proceedings of the 19th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), (pp. 335–339), Varsaw: IEEE.Google Scholar
  11. 11.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2011). Hall effect sensors performance investigation using three-dimensional simulations. In Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), (pp. 450–455), Gliwice: IEEE.Google Scholar
  12. 12.
    Popovic, R. S. (2004). Hall effect devices (2nd ed.). Bristol, UK: Institute of Physics Publishing.CrossRefGoogle Scholar
  13. 13.
    Blanchard, H., Iseli, C. D., & Popovic, R. S. (1997). Compensation of the temperature-dependent offset drift of a Hall sensor. Sensors and Actuators A-Physical, 60(1–3), 10–13.CrossRefGoogle Scholar
  14. 14.
    Blanchard, H., & Popovic, R. S. (1999). On chip compensation of the temperature dependent offset drift of Hall sensors. In Proceeedings of the 10th International Conference on Solid-State Sensors and Actuators (Transducers’99), (pp. 598–601), Sendai, Japan.Google Scholar
  15. 15.
    Suzuki, K. (2010). Analysis of ion implantated profiles for accurate process/device simulation: Ion implantation profile database based on tail function. Fujitsu Scientific & Technical Journal, 46(3), 307–317.Google Scholar
  16. 16.
    Xu, Y., & Pan, H.-B. (2011). An improved equivalent simulation model for CMOS integrated Hall plates. Sensors, 11, 6284–6296.CrossRefGoogle Scholar
  17. 17.
    Manic, D., Petr, J., & Popovic, R. S. (2000). Temperature cross-sensitivity of Hall plate in submicron CMOS technology. Sensors and Actuators A, 85, 244–248.CrossRefGoogle Scholar
  18. 18.
    Demierre, M. (2003). Improvements of CMOS Hall Microsystems and Applications for Absolute Angular Position Measurements, Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.Google Scholar
  19. 19.
    Sze, S. M., & Ng, K. K. (2007). Physics of semiconductor devices (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
  20. 20.
    Dimitropoulos, P. D., Drljaca, P. M., Popovic, R. S., & Chatznikolaou, P. (2008). Horizontal Hall devices: A lumped circuit model for EDA simulators. Sensors and Actuators A, 145–146, 161–175.CrossRefGoogle Scholar
  21. 21.
    Ajbl, A., Pastre, M., & Kayal, M. (2013). A fully integrated Hall sensor microsystems for contactless current measurement. IEEE Sensors Journal, 13(6), 2271–2278.CrossRefGoogle Scholar
  22. 22.
    Paun, M. A., Sallese, J. M., & Kayal, M. (2013). A Circuit Model for CMOS Hall Cells Performance Evaluation including Temperature Effect, Advances in Condensed Matter Physics, 2013, Article ID 968647, 10p.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria-Alexandra Paun
    • 1
    • 2
    Email author
  • Jean-Michel Sallese
    • 1
  • Maher Kayal
    • 1
  1. 1.STI-IEL-Electronics LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations