Analog Integrated Circuits and Signal Processing

, Volume 77, Issue 2, pp 155–168 | Cite as

An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications

  • Naser Khosro PourEmail author
  • François Krummenacher
  • Maher Kayal


This paper presents a fully integrated power management and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a miniaturized hydrogen sensor. In order to measure H2 concentration, conductance change of a miniaturized palladium nanowire sensor is measured and converted to a 13-bit digital value using a fully integrated sensor interface circuit. As these nanowires have temperature cross-sensitivity, temperature is also measured using an integrated temperature sensor for further calibration of the gas sensor. Measurement results are transmitted to the base station, using an external wireless data transceiver. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. As the harvested solar energy varies considerably in different lighting conditions, the power consumption and performance of the sensor is reconfigured according to the harvested solar energy, to guarantee autonomous operation of the sensor. For this purpose, the proposed energy-efficient power management circuit dynamically reconfigures the operating frequency of digital circuits and the bias currents of analog circuits. The fully integrated power management and sensor interface circuits have been implemented in a 0.18 μm CMOS process with a core area of 0.25 mm2. This circuit operates with a low supply voltage in the 0.9–1.5 V range. When operating at its highest performance, the power management circuit features a low power consumption of less than 300 nW and the whole sensor consumes 14.1 μA.


Analog integrated circuits Solar energy harvesting Ultra-low power circuits Power management circuits Sensor interface circuits Wireless sensor networks 



This work was supported by European project SiNAPS under contract number 257856. The authors would like to thank Dr. Vahid Majidzadeh for his support and helpful discussions about sensor interface circuit. The authors would also like to thank Prof. Fritz Falk and Dr. Jia Goubin from the Institute of Photonic Technology, Jena (IPHT-Jena) for providing miniaturized nanowire solar cells and Dr. Erik Puik for providing Palladium nanowire sensors.


  1. 1.
    Vullers, R. J. M., Schaijk, R. V., Visser, H. J., Penders, J., & Hoof, C. V. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38.CrossRefGoogle Scholar
  2. 2.
    Cook, B. W., Lanzisera, S., & Pister, K. S. J. (2006). SoC issues for RF smart dust. Proceedings of the IEEE, 94(6), 1177–1196.CrossRefGoogle Scholar
  3. 3.
    Chen, G., Ghaed, H., Haque, R., Wieckowski, M., Yejoong K., Gyouho K., Fick, D., Daeyeon K., Mingoo S., Wise, K., Blaauw, D., & Sylvester, D. (2011). A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp. 310–312.Google Scholar
  4. 4.
    Offermans, P., Tong, H. D., Van Rijn, C. J. M., Merken, P., Brongersma, S. H., & Crego-Calama, M. (2009). Ultralow-power hydrogen sensing with single palladium nanowires. Applied Physics Letters, 94, 223110–223113.CrossRefGoogle Scholar
  5. 5.
    Khosro Pour, N., Krummenacher, F., & Kayal, M. (2012). A miniaturized autonomous microsystem for hydrogen gas sensing applications. In Proceedings of IEEE 10th International New Circuits and Systems Conference, Montreal, Canada, pp. 201–204.Google Scholar
  6. 6.
    Van der Bent, J. F., & van Rijn, C. J. M. (2010). Ultra low power temperature compensation method for palladium nanowire grid. Procedia Engineering, 5, 184–187.CrossRefGoogle Scholar
  7. 7.
    Jia, G., Steglich, M., Sill, I., & Falk, F. (2012). Core–shell heterojunction solar cells on silicon nanowire arrays. Solar Energy Materials and Solar Cells, 96, 226–230.CrossRefGoogle Scholar
  8. 8.
    Varra V6HR Datasheet. Available online: Accessed on 10 March 2013.
  9. 9.
    Jungmoon, K., Jihwan, K., & Chulwoo, K. (2011). A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting. IEEE Transactions on Circuits and Systems II, 58(12), 802–806.CrossRefGoogle Scholar
  10. 10.
    Qiu, Y., Liempd, C. V., Veld, B. O. H., Blanken, P. G., & Hoof, C. V. (2011). 5 μW-to-10mW Input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, USA, pp. 118–120.Google Scholar
  11. 11.
    InfinitePowerSolutions Co. Website. Available online: Accessed on 3 March 2012.
  12. 12.
    Toumaz TZ1053 Datasheet. Available online: Accessed on 13 March 2012.
  13. 13.
    Zarlink ZL70250 Datasheet. Available online: Accessed on 3 March 2013.
  14. 14.
    Lu, C., Raghunathan, V., & Roy, K. (2010). Maximum power point considerations in micro-scale solar energy harvesting systems. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, pp. 273–276.Google Scholar
  15. 15.
    Khosro Pour, N., Krummenacher, F., & Kayal, M. (2013). Fully integrated solar energy harvester and sensor interface circuits for energy-efficient wireless sensing applications. Journal of Low Power Electronics and Applications, 3, 9–24.CrossRefGoogle Scholar
  16. 16.
    Khosro Pour, N., Krummenacher, F., & Kayal, M. (2012). Fully integrated ultra-low power management system for micro-power solar energy harvesting applications. Electronics Letters, 48, 118–338.CrossRefGoogle Scholar
  17. 17.
    Premrudeepreechacham, S., & Patanapirom, N. (2003). Solar-array modeling and maximum power point tracking using neural networks”, IEEE Bologna Power Tech Conference, Bologna, Italy.Google Scholar
  18. 18.
    Pastre, M., Krummenacher, F., Robortella, R., Simon-Vermot, R., & Kayal, M. (2009). A fully integrated solar battery charger. In Proceedings of Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, Toulouse, France, pp. 1–4.Google Scholar
  19. 19.
    Pertijs, M. A. P., Makinwa, K. A. A., & Huijsing, J. H. (2005). A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1 °C from −55 °C to 125 °C. IEEE Journal of Solid State Circuits, 40, 2805–2815.CrossRefGoogle Scholar
  20. 20.
    Markus, J., Silva, J., & Temes, G. C. (2004). Theory and applications of incremental ΔΣ converters. IEEE Transactions on Circuits and Systems, 51, 678–690.CrossRefGoogle Scholar
  21. 21.
    Schott, C., Racz, R., Manco, A., & Simonne, N. (2007). CMOS single-chip electronic compass with microcontroller. IEEE Journal of Solid-State Circuits, 42(12), 2923–2933.CrossRefGoogle Scholar
  22. 22.
    Agah, A., Vleugels, K., Griffin, Peter, B., Ronaghi, M., Plummer, J. D., et al. (2010). A high-resolution low-power incremental ∑ΔADC with extended range for biosensor arrays. IEEE Journal of Solid-State Circuits, 45(6), 1099–1110.CrossRefGoogle Scholar
  23. 23.
    Yanfei, C., et al. (2009). Split capacitor DAC mismatch calibration in successive approximation ADC. IEEE Custom Integrated Circuits Conference, 13–16, 279–282.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Naser Khosro Pour
    • 1
    Email author
  • François Krummenacher
    • 1
  • Maher Kayal
    • 1
  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations