Hardware-accelerated design space exploration framework for communication systems

Case studies in synthetic aperture radar and interference alignment processing
  • Markus Kock
  • Sebastian Hesselbarth
  • Martin Pfitzner
  • Holger Blume


The efficient hardware implementation of signal processing algorithms requires a rigid characterization of the interdependencies between system parameters and hardware costs. Pure software simulation of bit-true implementations of algorithms with high computational complexity is prohibitive because of the excessive runtime. Therefore, we present a field-programmable gate array (FPGA) based hybrid hardware-in-the-loop design space exploration (DSE) framework combining high-level tools (e.g. MATLAB, C++) with a System-on-Chip (SoC) template mapped on FPGA-based emulation systems. This combination significantly accelerates the design process and characterization of highly optimized hardware modules. Furthermore, the approach helps to quantify the interdependencies between system parameters and hardware costs. The achievable emulation speedup using bit-true hardware modules is a key enabling the optimization of complex signal processing systems using Monte Carlo approaches which are infeasible for pure software simulation due to the large required stimuli sets. The framework supports a divide-and-conquer approach through a flexible partitioning of complex algorithms across the system resources on different layers of abstraction. This facilitates to efficiently split the design process among different teams. The presented framework comprises a generic state of the art SoC infrastructure template, a transparent communication layer including MATLAB and hardware interfaces, module wrappers and DSE facilities. The hardware template is synthesizable for a variety of FPGA-based platforms. Implementation and DSE results for two case studies from the different application fields of synthetic aperture radar image processing and interference alignment in communication systems are presented.


Design space exploration (DSE) Emulation Fixed-point arithmetic Synthetic aperture radar (SAR) Interference alignment (IA) 


  1. 1.
    Banz, C., Hesselbarth, S., Flatt, H., Blume, H., & Pirsch, P. (2012). Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation. Transactions on high-performance embedded architectures and compilers, Springer.Google Scholar
  2. 2.
  3. 3.
    Blume, H. (2008). Modellbasierte Exploration des Entwurfsraumes für heterogene Architekturen zur digitalen Videosignalverarbeitung. RWTH Aachen. Habilitation Treatise (in German).Google Scholar
  4. 4.
    Borlenghi, F., Auras, D., Witte, E.M., Kempf, T., Ascheid, G., Leupers, R., & Meyr, H. (2012). An FPGA-accelerated testbed for hardware component development in MIMO wireless communication systems. SAMOS XII: International conference on embedded computer systems: Architectures, Modeling and Simulation.Google Scholar
  5. 5.
    Cadambe, V., & Jafar, S. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441. doi:10.1109/TIT.2008.926344.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cumming, I.G., & Wong, F.H. (2005). Digital processing of synthetic aperture radar data: Algorithms and implementation. Boston: Artech House Inc. Google Scholar
  7. 7.
    Del Valle, P., Atienza, D., Magan, I., Flores, J., Perez, E., Mendias, J., Benini, L., & De Micheli, G. (2006). A complete multi-processor System-on-Chip FPGA-based emulation framework. IFIP International conference on Very large scale integration (pp. 140–145). doi:10.1109/VLSISOC.2006.313218.
  8. 8.
    González, O., Ramírez, D., Santamaría, I., García-Naya, J., & Castedo, L. (2011). Experimental validation of interference alignment techniques using a multiuser MIMO testbed. 2011 International ITG workshop on smart antennas (WSA) (pp. 1 –8). doi:10.1109/WSA.2011.5741921.
  9. 9.
    Greisen, P., Haene, S., & Burg, A. (2010). Simulation and emulation of MIMO wireless baseband transceivers. EURASIP Journal on Wireless Communications and Networking 2010(1).Google Scholar
  10. 10.
    Gries, M. (2004). Methods for evaluating and covering the design space during early design development. Integration The VLSI Journal, 38(2), 131–183. doi:10.1016/j.vlsi.2004.06.001.Google Scholar
  11. 11.
    Hantscher, S., Lang, S., Hagelen, M., & Essen, H. (2010). 94 GHz person scanner with circular aperture as part of a new sensor concept on airports. 11th International radar symposium (IRS) (pp. 1–4).Google Scholar
  12. 12.
    Langemeyer, S., Pirsch, P., & Blume, H. (2011). A FPGA architecture for real-time processing of variable-length FFTs. Proc. of ICASSP'11.Google Scholar
  13. 13.
    Massey, J., Starr, J., Lee, S., Lee, D., Gerstlauer, A., & Heath, R. (2012). Implementation of a real-time wireless interference alignment network. In Conference record of the 46th asilomar conference on Signals, systems and ccmputers (ASILOMAR) (pp. 104–108). doi:10.1109/ACSSC.2012.6488968.
  14. 14.
    Moraes, F., Moreira, M., Lucas, C., Correa, D., Cardoso, D., Magnaguagno, M., Castilhos, G., & Calazans, N. (2012). A generic FPGA emulation framework. In 19th IEEE international conference on electronics, circuits and systems (ICECS) (pp. 233–236). doi:10.1109/ICECS.2012.6463758.
  15. 15.
    Noll, T.G. (2004). Application domain specific embedded FPGAs for SoC platforms. Irish signals and systems conference 2004 (ISSC’04). Belfast, Ireland.Google Scholar
  16. 16.
    Oppenheim, A.V., Schafer, R.W., & Buck, J.R. (1999). Discrete-time signal processing. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  17. 17.
    Paya-Vaya, G., Blume, H. (2012). TUKUTURI: A dynamically reconfigurable multimedia soft-processor for video processing applications. Poster presentation at the 7th International Conference on High-Performance and Embedded Architectures and Compilers, HiPEAC’12, Paris, France, vol. USB Proceedings.Google Scholar
  18. 18.
    Pfitzner, M., Cholewa, F., Pirsch, P., & Blume, H. (2012). Close-to-hardware error analysis for real-time wavenumber domain processsing. RADAR, IEEE CIE international conference on Radar.Google Scholar
  19. 19.
    Pirsch, P. (1998). Architectures for digital signal processing. Chichester: Wiley.Google Scholar
  20. 20.
    Pohl, N., Jaeschke, T., & Vogt, M. (2012). Ultra high resolution SAR imaging using an 80 GHz FMCW-radar with 25 GHz bandwidth. EUSAR, 9th European Conference on Synthetic Aperture Radar (pp. 189 –192).Google Scholar
  21. 21.
    Salmela, P., Burian, A., Järvinen, T., Happonen, A., & Takala, J.H. (2011). Low-complexity inverse square root approximation for baseband matrix operations. ISRN Signal Processing vol. 2011. doi:10.5402/2011/615934.
  22. 22.
    Schmidt, D., Shi, C., Berry, R., Honig, M., & Utschick, W. (2009). Minimum mean squared error interference alignment. Conference record of the 43rd asilomar conference on signals, systems and computers (pp. 1106–1110). doi:10.1109/ACSSC.2009.5470055.
  23. 23.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Markus Kock
    • 1
  • Sebastian Hesselbarth
    • 1
  • Martin Pfitzner
    • 1
  • Holger Blume
    • 1
  1. 1.Institute of Microelectronic SystemsLeibniz Universität HannoverHannoverGermany

Personalised recommendations