A continuous-time IR-UWB RAKE receiver for coherent symbol detection

  • Shanthi Sudalaiyandi
  • Håkon A. Hjortland
  • Tor Sverre Lande
Article

Abstract

The ultra-wide bandwidth released for unlicensed use by FCC a decade ago has initiated significant research efforts. The large ultra-wide bandwidth is attractive not only for increased data transfer speed but may also be exploited for added functionality like high-precision ranging in wireless sensor networks. RAKE based receivers are preferred for ultra-wideband (UWB) technology due to wide bandwidth. However, designing RAKE based correlating receivers remains quite challenging. Correlating receivers are also power consuming due to high-speed DSPs, ADC and matched filter. Timing synchronization is another issue associated with correlating receivers. In this paper a impulse radio ultra-wideband (IR-UWB) RAKE receiver is presented utilizing a continuous-time binary value coding scheme for power-efficiency and coherent symbol detection without the need for synchronization to achieve precise ranging using time-of-flight technique. A working prototype of the IR ranging transceiver which uses the IR-UWB RAKE receiver is presented with measured high-precision ranging towards 1.4 cm.

Keywords

IR-UWB RAKE receiver Continuous-time binary value (CTBV) coding Correlating RAKE receiver High-precision ranging 

Notes

Acknowledgment

The research is being sponsored by Norwegian Research Council project number 187857/S10 and was carried out at the Nanoelectronics group, Department of Informatics, University of Oslo, Norway.

References

  1. 1.
    Ghavami, M., Michael, L., & Kohno, R. (2007). Ultra wideband signals and systems in communication engineering. New York: Wiley.CrossRefGoogle Scholar
  2. 2.
    Win, M. Z., & Scholtz, R. A. (1998). On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(2), 51–53.Google Scholar
  3. 3.
    Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE Communications Letters, 2(2), 36–38.Google Scholar
  4. 4.
    Zhang, J., Orlik, P., Sahinoglu, Z., Molisch, A., & Kinney, P. (2009). UWB systems for wireless sensor networks. Proceedings of the IEEE, 97(2), 313–331.Google Scholar
  5. 5.
    Taylor, J. D. (1995). Introduction to ultra-wideband radar systems. Boca Raton: CRC Press.Google Scholar
  6. 6.
    Verhelst, M., & Dehaene, W. (2008). A flexible, ultra-low-energy 35 pJ/pulse digital back-end for a qac IR-UWB receiver. IEEE Journal of Solid-State Circuits, 43(7), 1677–1687.Google Scholar
  7. 7.
    Chao, Y.-L., & Scholtz, R. A. (2005). Ultra-wideband transmitted reference systems. IEEE Transactions on Vehicular Technology, 54(5), 1556–1569.Google Scholar
  8. 8.
    Lachartre, D., Denis, B., Morche, D., Ouvry, L., Pezzin, M., Piaget, B., Prouvee, J., & Vincent, P. (2009). A 1.1nj/b 802.15.4a-compliant fully integrated uwb transceiver in 0.13 μm CMOS. Solid-state circuits conference-digest of technical papers, 2009. ISSCC 2009. IEEE International (pp. 312–313, 313a).Google Scholar
  9. 9.
    Verhelst, M., Vereecken, W., Steyaert, M., & Dehaene, W. (2004). Architectures for low power ultra-wideband radio receivers in the 3.1–5 GHz band for data rates <10 mbps. Proceedings of the international symposium on low power electronics and design.Google Scholar
  10. 10.
    Van Helleputte, N., Verhelst, M., Dehaene, W., & Gielen, G. (2010). A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging. IEEE Journal of Solid-State Circuits, 48(1), 69–83.Google Scholar
  11. 11.
    Zhou, L., Chen, Z., Wang, C.-C., Tzeng, F., Jain, V., & Heydari, P. (2011). A 2-Gb/s 130-nm CMOS RF-correlation-based IR-UWB transceiver front-end. IEEE Transactions on Microwave Theory and Techniques.Google Scholar
  12. 12.
    Sudalaiyandi, S., Hjortland, H. A., Vu, T. A., Næss, Øivind, & Lande, T. S. (2012). Continuous-time high-precision IR-UWB ranging-transceiver in 90 nm CMOS. IEEE Asian solid-state circuits conference.Google Scholar
  13. 13.
    Li, Y. W. et al. (2005). A continuous-time programmable digital FIR filter. IEEE custom integrated circuits conference.Google Scholar
  14. 14.
    Schell, Y., & Tsividis, B. (2008). A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE Journal of Solid-State Circuits.Google Scholar
  15. 15.
    Hjortland, H. A., & Lande, T. S. (2009). CTBV integrated impulse radio design for biomedical applications. IEEE Biomedical Circuits and Systems. Oslo: University of Oslo.Google Scholar
  16. 16.
    Dokania, R., Wang, X., Tallur, S., Dorta-Quinones, C., & Apsel, A. (2010). An ultralow-power dual-band UWB impulse radio. IEEE Transactions on Circuits and Systems II: Express Briefs. (pp. 541–545).Google Scholar
  17. 17.
    Vu, T. A., Sudalaiyandi, S., Hjortland, H., Naess, O., Lande, T., & Hamran, S. (2012). A variable-gain single-bit ultra-wideband quantizer for baseband receiver front-end. IEEE Asia Pacific conference on circuits and systems (APCCAS), 483–486.Google Scholar
  18. 18.
    Hjortland, H., Wisland, D., Lande, T., Limbodal, C., & Meisal, K. (2007). Thresholded samplers for UWB impulse radar. IEEE International Symposium on Circuits and Systems.Google Scholar
  19. 19.
    Bulsara, A. R., & Zador, A. (1996). Threshold detection of wideband signals: A noise-induced maximum in the mutual information. Physical Review E, R2185–R2188.Google Scholar
  20. 20.
    Sudalaiyandi, S., Vu, T. A., Hjortland, H. A., Næss, Øivind, & Lande, T. S. (2012). Continuous-time symbol detector for IR-UWB rake receiver in 90 nm CMOS. IEEE Asian Pacific conference on circuits and systems.Google Scholar
  21. 21.
    Maymandi-Nejad, M., & Sachdev, M. (2003). A digitally programmable delay element: Design and analysis.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems. (pp. 871–878).Google Scholar
  22. 22.
    Schell, B., & Tsividis, Y. (2008). A low power tunable delay element suitable for asynchronous delays of burst information. IEEE Journal of Solid-State Circuits, 1227–1234.Google Scholar
  23. 23.
    Hjortland, H. A., Wisland, D. T., Lande, T. S., Limbodal, C., & Meisal, K. (2007). Thresholded samplers for UWB impulse radar. IEEE International Symposium on Circuits & Systems.Google Scholar
  24. 24.
    Lee, K. K., Dooghabadi, M. Z., Hjortland, H. A., Næss, & Lande, T. S. (2011). A 5.2 pJ/pulse impulse radio pulse generator in 90 nm CMOS. IEEE International Symposium on Circuits and Systems.Google Scholar
  25. 25.
    Kang, M. K., & Kim, T. W. (2012). CMOS IR-UWB receiver for ±9.7-mm range finding in a multipath environment. IEEE Transactions on Circuits and Systems II: Express Briefs. (pp. 538 –542).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shanthi Sudalaiyandi
    • 1
  • Håkon A. Hjortland
    • 1
  • Tor Sverre Lande
    • 1
  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations