Advertisement

A 0.003-mm2, 0.35-V, 82-pJ/conversion ultra-low power CMOS all digital temperature sensor for on-die thermal management

  • Yongtae KimEmail author
  • Peng Li
Article

Abstract

In this paper, a 0.35 V, 82 pJ/conversion ring oscillator based ultra-low power CMOS all digital temperature sensor is presented for on-die thermal management. We utilize subthreshold circuit operation to reduce power and adopt an all-digital architecture, consisting of only standard digital gates. Additionally, a linearization technique is proposed to correct the nonlinear characteristics of subthreshold MOSFETs. A bulk-driven 1-bit gated digitally controlled oscillator is designed for the temperature sensing node. Also, a 1-bit time-to-digital converter is employed in order to double the fine effective resolution of the sensor. The proposed digital temperature sensor has been designed in a 90-nm regular V T CMOS process. After a two-point calibration, the sensor has a maximum error of −0.68 to +0.61 °C over the operating temperature range from 0 to 100 °C, while the effective resolution reaches 0.069 °C/LSB. Under a supply voltage of 0.35 V, the power dissipation is only 820 nW with the conversion rate of 10K samples/s at room temperature. Also, the sensor occupies a small area of 0.003 mm2.

Keywords

Temperature sensor Time-to-digital converter (TDC) All digital sensor Subthreshold Ultra-low power Two-point calibration 

References

  1. 1.
    Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., & Stan, M. R. (2006). HotSpot: A compact thermal modeling methodology for early-stage VLSI design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(5), 501–513.CrossRefGoogle Scholar
  2. 2.
    Pedram, M., & Nazarian, S. (2006). Thermal modeling, analysis, and management in VLSI circuits: Principles and methods. Proceedings of the IEEE, 94(8), 1487–1501.CrossRefGoogle Scholar
  3. 3.
    Chen, D., Li, E., Rosenbaum, E., & Kang, S. M. (2000). Interconnect thermal modeling for accurate simulation of circuit timing and reliability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(2), 197–205.CrossRefGoogle Scholar
  4. 4.
    Brooks, D., Dick, R. P., Joseph, R., & Li, S. (2007). Power, thermal, and reliability modeling in nanometer-scale microprocessors. IEEE Micro, 27(3), 49–62.CrossRefGoogle Scholar
  5. 5.
    Ajami, A. H., Banerjee, K., Pedram, M., & van Ginneken, L. P. P. P. (2001). Analysis of non-uniform temperature-dependent interconnect performance in high performance ICs. In Proceedings of IEEE/ACM Design Automation Conference (DAC) (pp. 567–572).Google Scholar
  6. 6.
    Liao, W., He, L., & Lepak, K. M. (2005). Temperature and supply voltage aware performance and power modeling at microarchitecture level. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(7), 1042–1053.CrossRefGoogle Scholar
  7. 7.
    Black, J. R. (1969). Electromigration: A brief survey and some recent results. IEEE Transactions on Electron Devices, 16(4), 338–347.CrossRefGoogle Scholar
  8. 8.
    Hu, C., Tam, S. C., Hsu, F. C., Ko, P. K., Chan, T. Y., & Terrill, K. W. (1985). Hot-electron-induced MOSFET degradation: Model, monitor, and improvement. IEEE Transactions on Electron Devices, 32(2), 375–385.CrossRefGoogle Scholar
  9. 9.
    Chen, G., et al. (2003). Dynamic NBTI of PMOS transistors and its impact on device lifetime. In Proceedings of International Reliability Physics Symposium (pp. 196–202).Google Scholar
  10. 10.
    Huard, V., Denais, M., & Parthasarathy, C. (2006). NBTI degradation: From physical mechanisms to modelling. Microelectronics and Reliability, 46(1), 1–23.CrossRefGoogle Scholar
  11. 11.
    Martin-Martinez, J., et al. (2007). Lifetime estimation of analog circuits from the electrical characteristics of stressed MOSFETs. Microelectronics Reliability, 47(9), 1349–1352.CrossRefGoogle Scholar
  12. 12.
    Srinivasan, J., Adve, S. V., Bose, P., & Rivers, J. A. (2005). Lifetime reliability: Toward an architectural solution. IEEE Micro, 25(3), 70–80.CrossRefGoogle Scholar
  13. 13.
    Gielen, G., et al. (2008). Emerging yield and reliability challenges in nanometer CMOS technologies. In Proceedings of the Design, Automation and Test in Europe (DATE) (pp. 1322–1327).Google Scholar
  14. 14.
    Brooks, D., & Martonosi, M. (2001). Dynamic thermal management for high-performance microprocessors. In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA) (pp. 171–182).Google Scholar
  15. 15.
    Kumar, A., Li, S., Peh, L. S., & Jha, N. K. (2008). System-level dynamic thermal management for high-performance microprocessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(1), 96–108 (2008).CrossRefGoogle Scholar
  16. 16.
    Mitra, T., & Jayaseelan, R. (2009). Dynamic thermal management via architectural adaptation. In Proceedings of IEEE/ACM Design Automation Conference (DAC) (pp. 484–489).Google Scholar
  17. 17.
    Hameed, F., Faruque, M. A. A., & Henkel, J. (2011). Dynamic thermal management in 3D multi-core architecture through run-time adaptation. In Proceedings of the Design, Automation and Test in Europe (DATE) (pp. 299–304).Google Scholar
  18. 18.
    Ware M., et al. (2010). Architecting for power management: The IBM POWER7 approach. In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA) (pp. 1–11).Google Scholar
  19. 19.
    Rotem, E., Hermerding, J., Cohen, A., & Cain, H. (2006). Temperature measurement in the Intel core duo processor. In Proceedings of International Workshop on Thermal Investigations of ICs (pp. 23–27).Google Scholar
  20. 20.
    Chen, P., Chen, C. C., Tsai, C. C., & Lu, W. F. (2005). A time-to-digital-converter-based CMOS smart temperature sensor. IEEE Journal on Solid-State Circuits, 40(8), 1642–1648.CrossRefGoogle Scholar
  21. 21.
    Chen, P., Chen, T. K., Wang, Y. S., & Chen, C. C. (2009). A time-domain sub-micro watt temperature sensor with digital set-point programming. The IEEE Sensors Journal, 9(12), 1639–1646.CrossRefGoogle Scholar
  22. 22.
    Chen, P., Chen, C. C., Peng, Y. H., Wang, K. M., & Wang, Y. S. (2010). A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4°C ∼ +0.6°C over a 0°C to 90°C range. IEEE Journal on Solid-State Circuits, 45(3), 600–609.CrossRefGoogle Scholar
  23. 23.
    Lin, Y. S., Sylvester, D., & Blaauw, D. (2008). An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC) (pp. 507–510).Google Scholar
  24. 24.
    Kim, K., Lee, H., Jung, S., & Kim, C. (2009). A 366 kS/s 400 μW 0.0013 mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC) (pp. 203–206).Google Scholar
  25. 25.
    Lee, H., Kim, K., Jung, S., Song, J., Kim, J. K., & Kim, C. (2010). A 0.0018 mm2 frequency-to-digital-converter-based CMOS smart temperature sensor. Analog Integrated Circuits and Signal Processing, 62(2), 153–157.Google Scholar
  26. 26.
    Woo, K., Meninger, S., Xanthopoulos, T., Crain, E., Ha, D., & Ham, D. (2009). Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring. In International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (pp. 68–69).Google Scholar
  27. 27.
    Ituero, P., Ayala, J., & Lopez-Vallejo, M. (2008). A nanowatt smart temperature sensor for dynamic thermal management. IEEE Sensors Journal, 8(12), 2036–2043.CrossRefGoogle Scholar
  28. 28.
    Park, S., Min, C., & Cho, S. H. (2009). A 95 nW ring oscillator-based temperature sensor for RFID tags in 0.13 μm CMOS. In International Symposium on Circuits and Systems (ISCAS) (pp. 1153–1156).Google Scholar
  29. 29.
    Morshed, T. H., et al. (2011). BSIM4v4.7 MOSFET Model (2011). http://www-device.eecs.berkeley.edu/bsim/Files/BSIM4/BSIM470/BSIM470_Manual.pdf. Accessed 24 Nov 2012.
  30. 30.
    Chen, P., Shie, M. C., Zheng, Z. Y., Zheng, Z. F., & Chu, C. Y. (2007). A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(12), 2661–2668.CrossRefGoogle Scholar
  31. 31.
    Chen, P., Chen, S. C., Shen, Y. S., & Peng, Y. J. (2011). All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of −0.7°C–+0.6°C after one-point calibration. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(5), 913–920.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chung, C. C., & Yang, C. R. (2011). An autocalibrated all-digital temperature sensor for on-chip thermal monitoring. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(2), 105–109.CrossRefGoogle Scholar
  33. 33.
    Lo, Y. L., Yang, W. B., Chao, T. S., & Cheng, K. H. (2009). Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(5), 339–343.CrossRefGoogle Scholar
  34. 34.
    Cheng, K. H., Tsai, Y. C., Lo, Y. L., & Huang, J. S. (2011). A 0.5-V 0.4–2.24-GHz inductorless phase-locked loop in a system-on-chip. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(5), 849–859.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wismar, U., Wisland, D., & Andreani, P. (2007). Linearity of bulk-controlled inverter ring VCO in weak and strong inversion. Analog Integrated Circuits and Signal Processing, 50(1), 59–67.Google Scholar
  36. 36.
    Law, M., & Bermak, A. (2008). A time domain differential CMOS temperature sensor with reduced supply sensitivity. In International Symposium on Circuits and Systems (ISCAS) (pp. 2126–2129).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations