Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 303–315 | Cite as

A novel data transfer technique for bio-implantable devices through the inductive power transfer link



A novel technique for transferring data to biomedical implantable devices through the inductive power transfer link is presented. The new modulation technique presented in this paper is based on changing the duty cycle of the switching pulse of the class E power amplifier which drives the external coil. Hence, we call it duty cycle shift keying (DCSK). Inductive link efficiency and voltage gain are analyzed for the DCSK technique. Based on the mathematical analysis of the proposed technique its bit error rate is close to that of the BFSK. However, it can achieve a data rate to carrier frequency of 100 %. The modulator and demodulator of the proposed technique are simple and make it suitable for bio-implantable devices. The proposed circuit is simulated by advanced design system simulator using the 0.18 μm CMOS technology. Moreover, in order to verify the effectiveness of the proposed technique, a test setup is implemented using off-the-shelf components. The simulation as well as measurement results will be provided in this article.


Biomedical implants CMOS Demodulator Data rate Inductive coupling Duty-cycle-shift keying (DCSK) Link efficiency RF identification (RFID) Wireless BER 


  1. 1.
    Harb, A., Hu, Y., & Sawan, M. (2004). Low-power CMOS interface for recording and processing very low amplitude signals. Journal of Analog Integrated Circuits and Signal Processing, 39, 39–54.CrossRefGoogle Scholar
  2. 2.
    Hu, Y., & Sawan, M. (2005). A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Transactions on Circuits Systems I, 52(12), 2552–2562.CrossRefGoogle Scholar
  3. 3.
    Ghovanloo, M., & Najafi, K. (2004). A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Transactions on Circuits Systems I, Regular Papers, 51(12), 2374–2383.CrossRefGoogle Scholar
  4. 4.
    Ghovanloo, M., & Najafi, K. (2005). A tri-state FSK demodulator for asynchronous timing of high-rate stimulation pulses in wireless implantable microstimulators. In Proceedings, 2nd international IEEEIEMBS conference on neural engineering, March 2005 (pp. 116–119).Google Scholar
  5. 5.
    Ghovanloo, M., & Najafi, K. (2003). A high data-rate frequency shift keying demodulator chip for the wireless biomedical implants. IEEE International Symposium on Circuits and Systems Proceedings, 5, 45–48.Google Scholar
  6. 6.
    Ghovanloo, M., & Najafi, K. (2004). High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Transactions on Circuits and Systems I, 51(12), 2374–2383.CrossRefGoogle Scholar
  7. 7.
    Ghovanloo, M., & Najafi, K. (2004). A modular 32-site wireless neural stimulation microsystem. IEEE Journal of Solid-State Circuits, 39(12), 2457–2466.CrossRefGoogle Scholar
  8. 8.
    Luo, Z., & Sonkusale, S. (2008). A novel BPSK demodulator for biological implants. IEEE Transactions on Circuits Systems I, Regular Papers, 55(6), 1478–1484.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mirbozorgi, S. A., Nabovati, G., & Maymandi-Nejad, M. (2011). Duty cycle shift keying data transfer technique for bio-implantable devices. In IEEE, ISCAS, Brazil.Google Scholar
  10. 10.
    Razavi, B. (1998). RF microelectronics. Upper Saddle River, NJ: Prentice-Hall Inc.Google Scholar
  11. 11.
    Kazimierczuk, M. K., & Puczko, K. (1987). Exact analysis of class E tuned power amplifier at any Q and switch duty cycle. IEEE Transactions on Circuits Systems, Cas34(2), 149–159.CrossRefGoogle Scholar
  12. 12.
    Zierhofer, C. M., & Hochmair, E. S. (1996). Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Transactions on Biomedical Engineering, 43(7), 708–714.CrossRefGoogle Scholar
  13. 13.
    Gong, C.-S. A., Shiue, M.-T., Yao, K.-W., & Chen, T.-Y. (2008). Low-power and area-efficient PSK demodulator for wirelessly powered implantable command receivers. Electronics Letters, 44(14), 841–842.CrossRefGoogle Scholar
  14. 14.
    Asgarian, F., & Sodagar, A. (2009). A high-data-rate low-power BPSK demodulator and clock recovery circuit for implantable biomedical devices. In Proceedings of the international IEEE EMBS conference on neural engineering, May 2009.Google Scholar
  15. 15.
    Zhou, M., Liu, W., Wang, G., Sivaprakasam, M., Yuce, M. R., Weiland, J. D., & Humayun, M. S. (2006). A transcutaneous data telemetry system tolerant to power telemetry interference. In Proceedings of the IEEE 28th EMBS conference, 2006 (pp. 5884–5887).Google Scholar
  16. 16.
    Nabovati, G., & Maymandi-Nejad, M. (2010). Ultra-low power BPSK demodulator for bio-implantable chips. IEICE Electronics Express, 7(20), 1592–1596.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laval UniversityQuebec CityCanada
  2. 2.Department of Electrical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations