Analog Integrated Circuits and Signal Processing

, Volume 73, Issue 1, pp 427–437 | Cite as

New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances

  • D. R. Bhaskar
  • S. S. Gupta
  • R. Senani
  • A. K. Singh
Mixed Signal Letter

Abstract

There have been two efforts earlier on evolving CFOA-based fully-uncoupled oscillators i.e. circuits in which none of the resistors controlling the frequency of oscillation (FO) appear in the condition of oscillation and vice versa. However, a non-ideal analysis of the earlier known circuits reveals that due to the effect of the parasitic impedances of the CFOAs, the independent controllability of FO is completely destroyed. The main objective of this paper is to present two new fully-uncoupled oscillators in which the independent controllability of the FO remains intact even under the influence of the non-ideal parameters/parasitics of the CFOAs employed. The workability of the proposed circuits has been confirmed by experimental results using AD844-type CFOAs.

Keywords

Sinusoidal oscillators Current feedback-operational-amplifiers Analog circuit design Current mode circuits 

Notes

Acknowledgments

The authors gratefully acknowledge the constructive comments and suggestions of the anonymous reviewers which have been helpful in preparing the revised version of the manuscript. Authors thank Reviewer # 3 for his very thoughtful and insightful comments and for suggesting the flow-graph-based interpretation of the proposed circuits, excerpts from which have been included at the end of Sect. 2.

References

  1. 1.
    Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing; classification, review and new proposals. Radioengineering Journal, 17(4), 15–32.Google Scholar
  2. 2.
    Hribsek, H., & Newcomb, R. W. (1976). VCO controlled by one variable resistor. IEEE Transactions on Circuits and Systems, CAS-23(3), 166–169.CrossRefGoogle Scholar
  3. 3.
    Senani, R. (1979). New canonic sinusoidal oscillator with independent control through a single grounded resistor. Proceedings of the IEEE (USA), 67(4), 691–692.CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, B. B., & Tavakoli Darkani, M. (1984). A unified approach to the realization of canonic RC-active, single as well as variable, frequency oscillators using operational amplifiers. Journal of the Franklin Institute, 317(6), 413–439.CrossRefGoogle Scholar
  5. 5.
    Prem Pyara, V., Dutta Roy, S. C., & Jamuar, S. S. (1983). Identification and design of single amplifier single resistance controlled oscillators. IEEE Transactions on Circuits and Systems, 30(3), 176–181.CrossRefGoogle Scholar
  6. 6.
    Bhaskar, D. R., Tripathi, M. P., & Senani, R. (1993). Systematic derivation of all possible canonic OTA-C sinusoidal oscillators. Journal of the Franklin Institute (USA), 330(5), 885–903.MATHCrossRefGoogle Scholar
  7. 7.
    Bhaskar, D. R., & Senani, R. (1994). New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls. Microelectronics Journal (UK), 25, 115–123.CrossRefGoogle Scholar
  8. 8.
    Abuelma’atti, M. T., & Almaskati, R. H. (1989). Two new integrated active-C OTA-based linear voltage (current)-controlled oscillators. International Journal of Electronics, 66(1), 135–138.CrossRefGoogle Scholar
  9. 9.
    Rodriguez-Vazquez, A., Linares-Barranco, B., Huertas, J. L., & Sanchez-Sinencio, E. (1990). On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Transactions on Circuits and Systems, 37(2), 198–211.CrossRefGoogle Scholar
  10. 10.
    Celma, S., Martinez, P. A., & Carlosena, A. (1994). Current feedback amplifiers based sinusoidal oscillators. IEEE Transaction on Circuits and Systems I, 41(12), 906–908.CrossRefGoogle Scholar
  11. 11.
    Liu, S. I., Shih, C. S., & Wu, D. S. (1994). Sinusoidal oscillators with single element control using a current-feedback amplifier. International Journal of Electronics, 77(6), 1007–1013.CrossRefGoogle Scholar
  12. 12.
    Abuelma’atti, M. T., Farooqi, A. A., & Al-Shahrani, S. M. (1996). Novel RC oscillators using the current-feedback operational amplifier. IEEE Transaction on Circuits and System I, 43(2), 155–157.CrossRefGoogle Scholar
  13. 13.
    Gupta, S. S., & Senani, R. (1998). State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: additional new realizations. IEE Proceedings Circuits Devices Systems, 145(2), 415–418.CrossRefGoogle Scholar
  14. 14.
    Senani, R., & Singh, V. K. (1996). Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Transaction on Circuits and Systems I, 43(8), 698–700.CrossRefGoogle Scholar
  15. 15.
    Gupta, S. S., & Senani, R. (2005). Grounded-capacitor SRCOs using a single differential-difference-complementary-current-feedback-amplifier. IEE Proceedings Circuits Devices Systems, 152(1), 38–48.CrossRefGoogle Scholar
  16. 16.
    Gupta, S. S., & Senani, R. (2000). Grounded-capacitor current-mode SRCO: Novel application of DVCCC. Electronics Letters, IEE (UK), 36(3), 195–196.CrossRefGoogle Scholar
  17. 17.
    Bhaskar, D. R., & Senani, R. (1993). New current conveyor based single resistance controlled/voltage-controlled oscillator employing grounded capacitors. Electronics Letters, IEE (UK), 29(7), 612–614.CrossRefGoogle Scholar
  18. 18.
    Singh, A. K., & Senani, R. (2001). Active-R design using CFOA-poles: New resonators, filters and oscillators. IEEE Transactions on Circuits and Systems II, 48(5), 504–511.CrossRefGoogle Scholar
  19. 19.
    Chang, C. M. (1994). Novel current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electronics Letters, 30(3), 181–183.CrossRefGoogle Scholar
  20. 20.
    Soliman, A. M. (2000). Current feedback operational amplifier based oscillators. Analog Integrated Circuits and Signal Processing, 23(2), 45–55.CrossRefGoogle Scholar
  21. 21.
    Singh, V. K., Sharma, R. K., Singh, A. K., Bhaskar, D. R., & Senani, R. (2005). Two new canonic single-CFOA oscillators with Single resistor controls. IEEE Transactions on Circuits and Systems II, 52(12), 860–864.CrossRefGoogle Scholar
  22. 22.
    Toumazou, C., & Lidgey, F. J. (1994). Current feedback op-amps: A blessing in disguise? IEEE Circuits and Devices Magazine, 10(1), 34–37.Google Scholar
  23. 23.
    Soliman, A. M. (1996). Applications of the current feedback amplifier. Analog Integrated Circuits and Signal Processing, 11, 265–302.CrossRefGoogle Scholar
  24. 24.
    Lidgey, F. J., & Hayatleh, K. (1997). Current-feedback operational amplifiers and applications. Electronics and Communication Engineering Journal, 176–182.Google Scholar
  25. 25.
    Senani, R. (1998). Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback op-amps. Frequenz, 52(9/10), 196–206.Google Scholar
  26. 26.
    Martinez, P. A., Celma, S., & Sabadell, J. (1996). Designing sinusoidal oscillators with current-feedback amplifiers. International Journal of Electronics, 80, 637–646.CrossRefGoogle Scholar
  27. 27.
    Mahmoud, S. A., Elwan, H. O., & Soliman, A. M. (2000). Low voltage rail to rail CMOS current feedback operational amplifier and its applications for analog VLSI. Analog Integrated Circuits and Signal Processing, 25(1), 47–57.CrossRefGoogle Scholar
  28. 28.
    Mita, R., Palumbo, G., & Pennisi, S. (2005). Low-voltage high-drive CMOS current feedback op-amp. IEEE Transactions on Circuits and Systems II, 52(6), 317–321.CrossRefGoogle Scholar
  29. 29.
    Madian, A. H., Mahmoud, S. A., & Soliman, A. M. (2007). Low voltage CMOS fully differential current feedback operational amplifier with controllable 3-dB bandwidth. Analog Integrated Circuits and Signal Processing, 52, 139–146.CrossRefGoogle Scholar
  30. 30.
    Senani, R., & Singh, V. K. (1996). Synthesis of canonic single-resistance-controlled-oscillators using a single current-feedback-amplifier. IEE Proceedings Circuits Devices System, 143(1), 71–72.MATHCrossRefGoogle Scholar
  31. 31.
    Liu, S. I., & Tsay, J. H. (1996). Single-resistance-controlled sinusoidal oscillator using current feedback amplifiers. International Journal of Electronics, 80(5), 661–664.CrossRefGoogle Scholar
  32. 32.
    Martinez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transaction on Circuits and System I, 46(11), 1386–1390.CrossRefGoogle Scholar
  33. 33.
    Abuelma’atti, M. T., & Al-Shahrani, A. M. (1996). A novel low-component-count single-element-controlled sinusoidal oscillator using the CFOA pole. International Journal of Electronics, 80(6), 747–752.CrossRefGoogle Scholar
  34. 34.
    Abuelma’atti, M. T., & Farooqi, A. A. (1996). A novel single-element controlled oscillator using the current feedback-operational amplifier pole. Frequenz, 50(7–8), 183–184.Google Scholar
  35. 35.
    Abuelma’atti, M. T., & Al-Shahrani, S. M. (1997). New CFOA-based sinusoidal oscillators. International Journal of Electronics, 82(1), 27–32.CrossRefGoogle Scholar
  36. 36.
    Abuelma’atti, M. T., & Al-Shahrani, A. M. (1998). Novel CFOA-based sinusoidal oscillators. International Journal of Electronics, 85(4), 437–441.CrossRefGoogle Scholar
  37. 37.
    Gunes, E. O., & Toker, A. (2002). On the realization of oscillators using state equations. AEU, 56(5), 1–10.Google Scholar
  38. 38.
    Toker, A., Cicekoglu, O., & Kuntman, H. (2002). On the oscillator implementations using a single current feedback op-amp. Computers & Electrical Engineering, 28, 375–389.MATHCrossRefGoogle Scholar
  39. 39.
    Senani, R., & Sharma, R. K. (2005). Explicit current output sinusoidal oscillators employing only a single Current feedback op-amp. IEICE Electron Express, 2(1), 14–18.CrossRefGoogle Scholar
  40. 40.
    Gupta, S. S., & Senani, R. (2006). New single resistance controlled oscillator configurations using unity-gain cells. Analog Integrated Circuits and Signal Processing, 46, 111–119.CrossRefGoogle Scholar
  41. 41.
    Gupta, S. S., Sharma, R. K., Bhaskar, D. R., & Senani, R. (2006). Synthesis of sinusoidal oscillators with explicit current output using current-feedback Op-amps. WSEAS Transaction on Electronic, 3(7), 385–388.Google Scholar
  42. 42.
    Bhaskar, D. R., & Senani, R. (2006). New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Transactions on Instrumentation and Measurement, 55(6), 2014–2021.CrossRefGoogle Scholar
  43. 43.
    Celma, S., Martinez, P. A., & Carlosena, A. (1994). Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Proceedings Circuits Devices Systems, 141(6), 493–497.CrossRefGoogle Scholar
  44. 44.
    Bhaskar, D. R. (2003). Realization of second-order sinusoidal oscillator/filters with non-interacting controls using CFAs. Frequenz, 57(1/2), 12–14.CrossRefGoogle Scholar
  45. 45.
    Moon, G., Zaghloul, M. E., & Newcomb, R. W. (1990). Enhancement-mode MOS voltage-controlled linear resistor with large dynamic range. IEEE Transactions on Circuits and Systems, 37(10), 1284–1288.CrossRefGoogle Scholar
  46. 46.
    Senani, R. (1994). Realization of linear voltage-controlled resistance in floating form. Electronics Letters, IEE, 30(23), 1909–1911.CrossRefGoogle Scholar
  47. 47.
    Elwan, H. O., Mahmoud, S. A., & Soliman, A. M. (1996). CMOS voltage-controlled floating resistor. International Journal of Electronics, 81(5), 571–576.CrossRefGoogle Scholar
  48. 48.
    Al-Shahrani, S. M. (1994). CMOS wideband auto-tuning phase shifter circuit. Electronics Letters, IEE, 43(15), 804–806.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. R. Bhaskar
    • 1
  • S. S. Gupta
    • 2
  • R. Senani
    • 3
  • A. K. Singh
    • 4
  1. 1.Department of Electronics and Communication Engineering, Faculty of Engineering and TechnologyJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of Industrial Policy and Promotion, Ministry of Commerce and IndustryGovernment of India, Udyog BhawanNew DelhiIndia
  3. 3.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyDwarka, New DelhiIndia
  4. 4.Department of Electronics and Communication EngineeringITS Engineering CollegeGreater NoidaIndia

Personalised recommendations