Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 1, pp 111–119 | Cite as

1–8 GHz high efficiency single-stage travelling wave power amplifier

  • Mustafa Sayginer
  • Metin Yazgi
  • H. Hakan Kuntman
  • Bal S. Virdee


This paper describes a Class-A/AB wideband power amplifier that comprises of a single-stage transistor travelling wave structure in which capacitive coupling and frequency dependent lossy artificial-line are employed at the input of the active device. The proposed technique significantly enhances the amplifier’s gain-bandwidth product, input match and gain flatness performance. To ensure the amplifier delivers a predefined power to the load over its entire operating band 2-to-8 GHz a broadband load-pull technique was applied at the output of the amplifier. To avoid reduction in the amplifier’s bandwidth resulting from parasitic capacitive effects associated with the off-chip choke inductor a wideband RF choke was designed. The 1.31 × 2.93 mm2 power amplifier was fabricated using 0.25 μm GaAs pHEMT MMIC process. The measurement results show that the proposed amplifier delivers an average Psat of 29.5 dBm and Pout,1 dB of 26 dBm, and the corresponding PAE levels are 55 and 35 % for the Psat and Pout,1 dB, respectively.


Wideband power amplifiers GaAs PHEMT Load-pull technique 


  1. 1.
    Lin, S., Eron, M., & Fathy, A. E. (2009). Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs. IET Circuits, Devices and Systems, 3(3), 135–142.CrossRefGoogle Scholar
  2. 2.
    Wu, Q., Wu, Y., Fu, J., Jin, B., & Lee, J. C. (2005). An approach to ultra-broadband medium-power MMIC cascode-pair distributed amplifier design. IEICE Transactions, 88-C(7), 1353–1357.Google Scholar
  3. 3.
    Colantonio, P., Giannini, F., Giofre, R., & Piazzon, L. (2008). High-efficiency ultra-wideband power amplifier in GaN technology. Electronics Letters, 44(2), 130–131.CrossRefGoogle Scholar
  4. 4.
    Sewiolo, B., Fischer, G., & Weigel, R. (2009). A 12-GHz high-efficiency tapered traveling-wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2329–2336.CrossRefGoogle Scholar
  5. 5.
    Xie, C., & Pavio, A. (2007). Development of GaN HEMT based high power high efficiency distributed power amplifier for military applications (pp. 1–4). Washington: Military Communications Conference (MILCOM).Google Scholar
  6. 6.
    Narendra, K., Limiti, E., Paoloni, C., Collantes, J. M., Jansen, R. H., & Yarman, B. S. (2010). Vectorially combined distributed power amplifier with load pull impedance determination. Electronics Letters, 46(16), 1137–1138.CrossRefGoogle Scholar
  7. 7.
    Krishnamurthy, K., Veturi, R., et al. (2000). Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers. IEEE Journal of Solid State Circuits, 35(9), 1285–1292.CrossRefGoogle Scholar
  8. 8.
    Zhongzi, C., et al. (2009). A 4–9 GHz 10 W wideband power amplifier. Journal of Semiconductors, 30(2).Google Scholar
  9. 9.
    Xu, J., Wang, Z., Zhang, Y., & Ma, L. (2011). High-efficiency tapered distributed power amplifier with 2 μm GaAs HBT process. Microwave and Optical Technology Letters, 53(8), 1924–1927.CrossRefGoogle Scholar
  10. 10.
    Banyamin, B., & Berwick, M. (2000). The gain advantages of four cascaded single stage distributed amplifier configurations. Microwave Symposium Digest, IEEE MTT-S International, 3, 1325–1328.Google Scholar
  11. 11.
    Kinghorn, A. M. (2008). Where next for airborne AESA technology? In IEEE radar conference proceedings, Rome (pp. 287–290). Rome.Google Scholar
  12. 12.
    Abstract on Call For Papers, IEEE topical conference on RF power amplifiers for wireless and radio application. Accessed 20 January 2012.
  13. 13.
    Nelson, S. R., & Macksey, H. M. (1981). 2-18 GHz, high-efficiency, medium-power GaAs FET amplifiers. Microwave Symposium Digest, IEEE MTT-S International, vol(15-19), 31–33.Google Scholar
  14. 14.
    Reese, E., Allen, D., Lee, C., & Nguyen, T. (2010). Wideband power amplifier MMICs utilizing GaN on SiC. In IEEE MTT-S International Microwave Symposium Digest, Anaheim (pp. 1230–1233). Anaheim.Google Scholar
  15. 15.
    Itoh, Y., Mochizuki, M., Nii, M., Kohno, Y., & Takagi, T. (1996). An ultrabroadband monolithic lossy match power amplifier using prematching circuits. Electronics and Communications in Japan (Part II: Electronics), 79, 24–38.CrossRefGoogle Scholar
  16. 16.
    Green, B. M., Tilak, V., Sungjae, L., Hyungtak, K., Smart, J. A., Webb, K. J., et al. (2001). High-power broadband AlGaN/GaN HEMT MMICs on SiC substrates. Microwave Symposium Digest, IEEE MTT-S International, 2, 1059–1062.Google Scholar
  17. 17.
    Sayed, A., & Boeck, G. (2005). Two-stage ultrawide-band 5-W power amplifier using SiC MESFET. IEEE Transactions on Microwave Theory and Techniques, 53(7), 2441–2449.CrossRefGoogle Scholar
  18. 18.
    Ayasli, Y., et al. (1982). A monolithic GaAs 1-13-GHz traveling-wave amplifier. IEEE Transactions on Microwave Theory and Techniques, MTT-30(7), 976–981.CrossRefGoogle Scholar
  19. 19.
    Campovecchio, M., et al. (1996). Large signal design method of distributed power amplifiers applied to a 2–18 GHz GaAs chip exhibiting high power density performances. International Journal of Microwave and MMW CAE, 6(4), 259–269.Google Scholar
  20. 20.
    Wong, T. T. Y. (1993). Fundamentals of distributed amplifiers. Boston, MA: Artech House.Google Scholar
  21. 21.
    Ayasli, Y., Miller, S. W., Mozzi, R., & Hanes, L. K. (1984). Capacitively coupled traveling-wave power amplifier. IEEE Transactions on Microwave Theory and Techniques, MTT-32(12), 1704–1709.CrossRefGoogle Scholar
  22. 22.
    Virdee, A. S., & Virdee, B. S. (2000). Experimental performance of ultra broadband amplifier design concept employing cascaded reactively terminated single-stage distributed amplifier configuration. Electronics Letters, 36(18), 1554–1555.CrossRefGoogle Scholar
  23. 23.
    Virdee, B. S., Yazgi, M., & Virdee, A. S. (2007). Cascaded single-stage amplifier with improved gain-frequency performance using frequency-dependent lossy artificial lines. In Proceedings of the 2nd European microwave integrated circuits conference, Munich (pp. 184–186). Munich.Google Scholar
  24. 24.
    Krishnamurthy, K., Long, S. I., & Rodwell M. J. W. (1999). Cascode-delay-matched distributed amplifiers for efficient broadband microwave power amplification. In IEEE MTT-S International Microwave Symposium Digest, vol. 2 of 4, Anaheim, CA, (pp. 819–822). Anaheim, CA.Google Scholar
  25. 25.
    Yazgi, M., Sayginer, M., Virdee, B. S., Toker, A., & Kuntman, H. (2010). Single-stage travelling wave amplifier for power applications. In Proceedings of OPTIM’2010: 12th international conference on optimization of electrical and electronic equipment, CD-ROM, Romania (pp. 949–952). Romania.Google Scholar
  26. 26.
    Cripps, S. C. (2006). RF power amplifier design for wireless communications. Norwood, MA: Artech House.Google Scholar
  27. 27.
    Sayginer, M., Yazgi, M., & Kuntman, H. (2011). 0.1–10 GHz 0.5 W high efficiency single transistor GaAs PHEMT power amplifier design using load-pull simulations. In SİU’2011: IEEE 19. Signal Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Kemer, Antalya, (pp. 841–844, 20–22). Kemer, Antalya.Google Scholar
  28. 28.
    Sechi, F., & Bujatti, M. (2009). Solid-state microwave high-power amplifiers. Norwood, MA: Artech House.Google Scholar
  29. 29.
    Virdee, B. S., et al. (2004). Broadband microwave amplifiers. Norwood, MA: Artech House.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mustafa Sayginer
    • 1
  • Metin Yazgi
    • 1
  • H. Hakan Kuntman
    • 1
  • Bal S. Virdee
    • 2
  1. 1.Department of Electronics and Communication Engineering, Faculty of Electrical and Electronics EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Faculty of Computing, Centre for Communications TechnologyLondon Metropolitan UniversityLondonUK

Personalised recommendations