Antenna design strategy and demonstration for software-defined radio (SDR)

  • Taeyoung Yang
  • William A. Davis
  • Warren L. Stutzman
  • S. M. Shajedul Hasan
  • Randall Nealy
  • Carl B. Dietrich
  • Jeff H. Reed


Antennas are a key enabling technology for software-defined radio (SDR). Although software is extremely flexible, SDR’s potential is limited by antenna size and performance. In this paper, we review typical antenna miniaturization techniques and fundamental theories that limit antenna size and performance including operational bandwidth, gain (or range), and radiation pattern. Possible antenna design strategies are discussed to meet the desired specifications in SDR based on observations from the limit theories. The application of strategies to enable multiband (resonant), continuous multiband (frequency independent), and instantaneous, ultra-wideband antennas are discussed qualitatively. Advantages, disadvantages, and design trade-off strategies for different types of antennas are compared from a system-level perspective. A design example for a compact ultra-wideband (UWB) antenna is presented for a software-defined platform. The example involves a direct-conversion radio developed in Wireless@VT that uses a Motorola RFIC having a 100 MHz–6 GHz operational frequency range with a 9 kHz–20 MHz channel bandwidth. The example antenna covers frequencies from 450 MHz to 6 GHz instantaneously with approximately 5-dBi realized gain over a finite-size ground plane, including return loss and omni-directional coverage.


Software-defined radio (SDR) Fundamental limits on antennas Ultra-wideband antenna Antenna gain Antenna bandwidth Antenna miniaturization 


  1. 1.
    Davis, W. A., Yang, T., Caswell, E. D., & Stutzman, W. L. (2011). Fundamental limits on antenna size: A new limit. IET Micro-waves, Antennas and Propagation, 5, 1297–1302.CrossRefGoogle Scholar
  2. 2.
    Yang, T., & Davis, W. A. (2006). Miniaturization of planar two-arm spiral antennas using slow-wave enhancements. Presented at USNC/URSI National Radio Science Meeting, Boulder, CO.Google Scholar
  3. 3.
    Engheta, N., & Ziolkowski, R. W. (2006). Electromagnetic metamaterials: physics and engineering explorations. New York: Wiley-IEEE Press.Google Scholar
  4. 4.
    Sussman-Fort, S. E., & Rudish, R. M. (2006). Non-Foster impedance matching for transmit applications. In Proceedings of IEEE international workshop on antenna technology: Small antennas and novel metamaterials, White Plains (pp.53–56).Google Scholar
  5. 5.
    Wheeler, H. A. (1947). Fundamental limitations of small antennas. Proceedings of IEEE, 69, 1479–1484.Google Scholar
  6. 6.
    Chu, L. J. (1948). Physical limitations on omni-directional antennas. Journal of Applied Physics, 19, 1163–1175.CrossRefGoogle Scholar
  7. 7.
    Davis, W. A. (2005). Review of fundamental limits of antennas and identification of the terms missing in recent developments. Presented at USNC/URSI National Radio Science Meeting, Boulder, CO.Google Scholar
  8. 8.
    Yang, T., Davis, W. A., & Stutzman, W. L. (2009). Fundamental-limit perspectives on ultrawideband antennas. Radio Science, 44, 167–174.CrossRefGoogle Scholar
  9. 9.
    Wheeler, R. A. (1959). The radiansphere around a small antenna. Proceedings of the IRE, 47, 1325–1331.CrossRefGoogle Scholar
  10. 10.
    Wong, K.-L. (2002). Compact and broadband microstrip antennas. New York: John Wiley.CrossRefGoogle Scholar
  11. 11.
    Kumar, G., & Ray, K. P. (2002). Broadband microstrip antennas. Norwood, Massachusetts: Artech House.Google Scholar
  12. 12.
    Chen, Z. N., & Chia, M. Y. W. (2006). Broadband planar antennas: Design and applications. Hoboken, NJ: John Wiley.Google Scholar
  13. 13.
    Yarman, B. S. (1982). A simplified real frequency technique for broadband matching complex generator to complex loads. RCA Review, 43, 529–541.Google Scholar
  14. 14.
    Yegin, K., & Martin, A. Q. (1997). Very broadband loaded monopole antennas. Proceedings of IEEE Antennas and Propagation Society International Symposium, 1, 232–235.Google Scholar
  15. 15.
    Mattioni, L., Marrocco, G., & Falcione, G. (2006). The bifolded antenna for software defined radio naval systems. In Proceedings of IET international conference on ionospheric radio systems and techniques, London (pp.54–58).Google Scholar
  16. 16.
    Volakis, J. L., Nurnberger, M. W., & Filipovic, D. S. (2001). A broadband cavity-backed slot spiral antenna. IEEE Antennas and Propagation Magazine, 43, 15–26.CrossRefGoogle Scholar
  17. 17.
    Kramer, B. A., Chen, C.-C., & Volakis, J. L. (2008). Size reduction of a low-profile spiral antenna using inductive and dielectric loading. IEEE Antennas and Wireless Propagation Letters, 7, 22–25.CrossRefGoogle Scholar
  18. 18.
    Gonzalez, G. (1996). Microwave transistor amplifiers: Analysis and design (2nd ed.). New Jersey: Prentice Hall.Google Scholar
  19. 19.
    Ellingson, S. W. (2005). Antennas for the next generation of low frequency radio telescopes. IEEE Transaction on Antennas and Propagation, 53, 2480–2489.CrossRefGoogle Scholar
  20. 20.
    Yang, T., Davis, W. A., & Stutzman, W. L. (2009). Compact ultra-wideband (UWB) antenna (CUA) invention. Accessed January 26, 2011,
  21. 21.
    Nicolson, A. M., & Ross, G. F. (1968). Measurement of the intrinsic properties of materials by time domain techniques. IEEE Transaction on Instrumentation and Measurement, IM-17, 395–402.CrossRefGoogle Scholar
  22. 22.
    Weir, W. W. (1974). Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proceedings of the IEEE, 62, 33–36.CrossRefGoogle Scholar
  23. 23.
    EM Software & Systems (2010). FEKO Suite v5.5. Accessed January 26, 2011,
  24. 24.
    Anderson, C. R. (2006). A software-defined ultra-wideband transceiver testbed for communications, ranging, and imaging (Doctoral dissertation, Virginia Polytechnic Institute and State University: Virginia, 2006).Google Scholar
  25. 25.
    Faranak, N., & Dowla F. (2009). Software-defined ultra-wideband radio communications: A new RF technology for emergency response applications. Presented at Workshop on Emergency Management: Incident, Resource, and Supply Chain Management (EMWS09), Irvine, CA. Accessed June 15 2011,

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Taeyoung Yang
    • 1
  • William A. Davis
    • 1
  • Warren L. Stutzman
    • 1
  • S. M. Shajedul Hasan
    • 1
  • Randall Nealy
    • 1
  • Carl B. Dietrich
    • 1
  • Jeff H. Reed
    • 1
  1. 1.Wireless@VT, Virginia TechBlacksburgUSA

Personalised recommendations