Implementation of an SDR platform using GPU and its application to a 2 × 2 MIMO WiMAX system

  • Chiyoung Ahn
  • June Kim
  • Jaehyuk Ju
  • Jinho Choi
  • Byungcho Choi
  • Seungwon Choi


Conventional communication systems have been implemented using digital signal processors (DSPs) and/or field programmable gate arrays (FPGAs), especially for software defined radio (SDR) functionality. We propose a scheme that uses a graphics processing unit (GPU) in place of the conventional DSPs or FPGAs for the implementation of an SDR-based communication system. The GPU, a high-speed parallel processor with multiple arithmetic logic units, is adopted for the signal processing of the physical layer required for the parallel processing in an SDR system. The compute unified device architecture (CUDA) based on the C language provides a software development kit (SDK) for the modem application of the GPU. Therefore we utilize the CUDA SDK to implement the real-time modem function. This paper presents an implementation of a 2 × 2 multiple-input multiple-output (MIMO) WiMAX system employing a GPU as the real-time modem. By installing a radio frequency module on top of the GPU modem, we implement a real-time transmission system for video data. The performance of the proposed GPU-based system is demonstrated by comparing its operation time against that of the conventional DSP-based system.





This work was supported by Seoul R&BD Program (PA090743).


  1. 1.
    Kim, J., Hyeon, S., & Choi, S. (2010). Implementation of an SDR system using graphics processing unit. IEEE Communications Magazine, 48, 156–162.CrossRefGoogle Scholar
  2. 2.
    Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879–899.CrossRefGoogle Scholar
  3. 3.
    Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J. (2008). NVIDIA tesla: A unified graphics and computing architecture. IEEE Micro, 28(2), 39–55.CrossRefGoogle Scholar
  4. 4.
    IEEE Standards Activities Department. (2007, Dec) IEEE P802.16 Rev2/D2. DRAFT standard for local and metropolitan area networks. Air interface for broadband wireless access systems.Google Scholar
  5. 5.
    NVIDIA Corporation. (2008). NVIDIA CUDA Compute Unified Device Architecture Programming Guide version 2.0.Google Scholar
  6. 6.
    IEEE (2007, Dec) Std 802.16e-2005 IEEE standard for local and metropolitan area networks, Part 16: Air interface for broadband wireless access systems.Google Scholar
  7. 7.
    Surendra Raju, M., Annavajjala, R., & Chockalingam, A. (2006). BER analysis of QAM on fading channels with transmit diversity. IEEE Transactions on Wireless Communications, 5(3), 481–486.CrossRefGoogle Scholar
  8. 8.
    Van de Beek, J. J., Sandell, M., & Borjesson, P. O. (1997). ML estimation of time and frequency offset on OFDM systems. IEEE Transaction on signal processing, 45(7), 1800–1805.MATHCrossRefGoogle Scholar
  9. 9.
    Coleri, S., Ergen, M., Puri, A., & Bahai, A. (2002). Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 48(3), 223–229.CrossRefGoogle Scholar
  10. 10.
    Wu, D., Eilert, J., Asghar, R., Liu, D., & Ge, M. (2010, April). VLSI implementation of a multi-standard MIMO symbol detector for 3GPP LTE and WiMAX. In: Wireless Telecommunications Symposium (WTS).Google Scholar
  11. 11.
    Sklar, B. (2001). Digital communications—fundamentals and applications (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  12. 12.
    NVIDIA GTX 275 Datasheet, NVIDIA Corporation.
  13. 13.
  14. 14.
    TMS320C6000 Optimizing Compiler v6.1 User’s Guide, Texas Instruments Inc.,

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chiyoung Ahn
    • 1
  • June Kim
    • 1
  • Jaehyuk Ju
    • 1
  • Jinho Choi
    • 2
  • Byungcho Choi
    • 3
  • Seungwon Choi
    • 1
  1. 1.Department of Electronics and Computer EngineeringHanyang UniversitySeoulKorea
  2. 2.School of EngineeringSwansea UniversitySwanseaUK
  3. 3.School of Electronics EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations