Behavioral circuit models of power BAW resonators and filters

  • F. Constantinescu
  • M. Nitescu
  • A.-G. Gheorghe
  • A. Florea
  • O. Llopis
Article

Abstract

A nonlinear circuit model taking into account the parasitics of the resonator connection to the measurement bench is presented; the measured data agree with the simulation results, except some undulations in the frequency dependence of the 2f harmonic component of the reflected power. New models for the anti-series and the anti-parallel connections of two resonators are proposed. The frequency warping effect is discussed together with its elimination using the Gear methods up to the sixth order.

Keywords

Power BAW resonators Behavioral models Nonlinear circuit models Simulation of high Q circuits 

References

  1. 1.
    Lakin, K. M. (2005). Thin film resonator technologies. IEEE Trans UFFC, 52(5), 707–716.CrossRefGoogle Scholar
  2. 2.
    Ketcham R. S., Kline G. R., & Lakin K. M. (1988). Performance of TFR filters under elevated power conditions. 42-nd Annual Frequency Control Symposium, 106–111 (1988). doi:10.1109/FREQ.1988.27590.
  3. 3.
    Nosek, J. (1999). Drive level dependence of the resonant frequency in BAW quartz resonator and his modeling. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 46, 823–829.CrossRefGoogle Scholar
  4. 4.
    Nitescu, F. M., & Gheorghe, C. A. G. (2008). An AC parametric behavioral model of a nonlinear BAW resonator. In European conference on circuits and systems for communications (pp. 176–179). Bucharest: IEEE.Google Scholar
  5. 5.
    Albareda, A., Gonnard, P., Perrin, V., Briot, R., & Guyomar, D. (2000). Characterization of the mechanical nonlinear behavior of piezolelectric ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47, 844–853.CrossRefGoogle Scholar
  6. 6.
    Aigner, R., Huynh, N. -H., Handtmannn. M., & Markensteiner, S. (2004). Behavior of BAW devices at high power level. In Proceedings of 2004 IEEE MTT-S international microwave symposium (pp. 12–17). Rotterdam: IEEE MTT-S.Google Scholar
  7. 7.
    Constantinescu, F., Nitescu, M., & Gheorghe, A. G. (2007). Circuit models for power BAW resonators—set-up and implementation. In Proceedings of AFRICON 2007 (pp. 26–28). Windhoek: AFRICON.Google Scholar
  8. 8.
    Constantinescu F., & Nitescu, A. G. M. (2008). Gheorghe new circuit models for power BAW resonators. In Proceedings of ICCSC 2008 (pp. 176–179). Shanghai: ICCSC.Google Scholar
  9. 9.
    Constantinescu, F., Nitescu, M., & Gheorghe, A. G. (2010). Modeling and simulation of power BAW resonators and filters. In Proceedings of XIth international workshop on symbolic and numerical methods modeling and applications to circuit design, October 5–6, 2010, Gammarth, Tunisia, pp. 1–4.Google Scholar
  10. 10.
    Dubus, B. (2006). Private communication.Google Scholar
  11. 11.
    Constantinescu, F., Gheorghe, A. G., Nitescu, M., Florea, A., Llopis, O., & Taras, P. (2011). Parameter identification for new nonlinear circuit models of power BAW resonators. Advances in Electrical and Computer Engineering, 11, 55–62.Google Scholar
  12. 12.
    Florea, A., Llopis, O., Nitescu, M., Constantinescu, F. (2010). Experimental results on the nonlinear effects in power BAW resonators. In IEEE international symposium on electrical and electronic engineering. Galati: IEEE.Google Scholar
  13. 13.
    Ben Hassine N., Mercier D., Renaux P. (2009). Solidly mounted resonators under high power—study for reliability assessment. 5th International Conference on Ph.D. Research in Microelectronics & Electronics, 12–17 (2009). doi:10.1109/RME.2009.5201318.
  14. 14.
    Aigner R., Handtmann M. (2006). US patent 2006/0290446 A1, 28 Dec 2006.Google Scholar
  15. 15.
    Brambilla, A., & Storti-Gajani, G. (2003). Frequency warping in time domain circuit simulation. IEEE Transactions on Circuits and Systems -I: Fundamental Theory and Applications, 50(7), 904–913.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gheorghe, A. G., Constantinescu, F., & Nitescu, M. (2009). Error control in circuit transient analysis. In Proceedings of international conference on electronic circuits and systems 2009. Medina Hammamet: Tunis.Google Scholar
  17. 17.
    Ueda, M., Iwaki, M., Nishihara, T., Satoh, Y., Hashimoto, K.-Y. (2008). A circuit model for nonlinear simulation of radio-frequency filters employing bulk acoustic wave resonators. IEEE Trans UFFC, 55(4), 849–856.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Constantinescu
    • 1
  • M. Nitescu
    • 1
  • A.-G. Gheorghe
    • 1
  • A. Florea
    • 1
  • O. Llopis
    • 2
  1. 1.Department of Electrical EngineeringPolitehnica UniversityBucharestRomania
  2. 2.LAAS–CNRSToulouseFrance

Personalised recommendations