Advertisement

Design optimization of an out-of-plane gap-closing electrostatic Vibration Energy Harvester (VEH) with a limitation on the output voltage

  • R. Guillemet
  • P. Basset
  • D. Galayko
  • T. Bourouina
Article

Abstract

This paper presents a simple analytical method to optimize the efficiency of an electrostatic out-of-plane gap-closing (OPGC) Vibration Energy Harvesters (VEH). For the first time the electrical and mechanical behaviours of the transducer are addressed simultaneously, while a voltage limitation on the transducer’s terminals is set to prevent any damage in the conditioning electronic. The presented work allows to the designer to determine the best strategy depending on whereas the system is passive or able to be self-adapted to the external vibrations parameters. The optimization is performed for a 1 cm² device made of bulk silicon to be fabricated using a batch MEMS process. Up to 15 μW can be obtained at 200 Hz if the output voltage is limited to 60 V. The calculations are validated by VHDL-AMS/ELDO simulations.

Keywords

Vibration energy harvesting/scavenging Energy conversion Electrostatic transduction Power generation Microtechnology MEMS 

Notes

Acknowledgments

This work has been done in the framework of the project SESAM (Smart Multi-Source Energy Scavenger for Autonomous Microsystems) funded by the French National Research Agency (ANR) through the contract ANR-08-SEGI-019.

References

  1. 1.
    Basset, P., Galayko, D., Mahmood Paracha, A., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19, 115025.CrossRefGoogle Scholar
  2. 2.
    Dudka, A., Galayko, D., & Basset, P. (2009). Smart adaptive power management in electrostatic harvesters of vibration energy. In Proceeding of the 9th international workshop on Micro and nanotechnology for Power generation and energy conversion applications (PowerMEMS’09). Washington, USA.Google Scholar
  3. 3.
    Galayko, D., Pizarro, R., Basset, P., Mahmood Paracha, A., & Amendola, G. (2007). AMS modeling of controlled switch for design optimization of capacitive vibration energy harvester. In Proceedings of IEEE international workshop on Behavioral modeling and simulation conference (BMAS’07) (pp. 115–120). San José, USA.Google Scholar
  4. 4.
    Galayko, D., & Basset, P. (2008). Mechanical/electrical power-aware impedance matching for design of capacitive vibration energy harvesters. In Proceeding of the 8th international workshop on Micro and nanotechnology for power generation and energy conversion applications (PowerMEMS’08). Sendai, Japan.Google Scholar
  5. 5.
    Galayko, D., & Basset, P. (2010). A general analytical tool for the design of Vibration Energy Harvesters (VEH) based on the mechanical impedance concept—Application to electrostatic transducers. Accepted in TCAS.Google Scholar
  6. 6.
    Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chadakasan, A. P., & Lang, J. H. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.CrossRefGoogle Scholar
  7. 7.
    Mitchelson, P. D., Green, T. C., Yeatman, E. M., & Holmes, A. S. (2004). Architectures for vibration-driven micropower generators. IEEE Journal of Microelectromechancial Systems, 13(3), 429–440.CrossRefGoogle Scholar
  8. 8.
    Nathanson, H. C., Nevel, W. E., Wickstrom, R. A., & Davis, J. R. (1967). The resonant gate transistor. IEEE Transactions on Electron Devices, ED-14, 117–133.CrossRefGoogle Scholar
  9. 9.
    Roundy, S., Wright, P. K., & Pister, K. S. J. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of ASME international mechanical engineering congress & exposition (IMECE’02) (pp. 1–10). Orleans, Louisiana.Google Scholar
  10. 10.
    Yao, J. J., & MacDonald, N. C. (1995). A micromachined, single-crystal silicon, tunable resonator. Journal of Micromechanics and Microengineering, 5, 257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Guillemet
    • 1
  • P. Basset
    • 1
  • D. Galayko
    • 2
  • T. Bourouina
    • 1
  1. 1.Université Paris-Est, ESYCOM LaboratoryNoisy-le-Grand CedexFrance
  2. 2.Université Paris-VI, LIP6 LaboratoryParis CedexFrance

Personalised recommendations