Images encryption by the use of evolutionary algorithms



Increasing information transmission in public networks raises a significant number of questions. For example, the security, the confidentiality, the integrity and the authenticity of the data during its transmission are very problematical. So, encryption of the transmitted data is one of the most promising solutions. In our work, we focus on the security of image data, which are considered as specific data because of their big size and their information which are of two-dimensional nature and also redundant. These data characteristics make the developed algorithms in the literature unavailable in their classical forms, because of the speed and the possible risk of information loss. In this paper, we develop an original “images encryption” algorithm based on evolutionary algorithms. The appropriateness of the proposed scheme is demonstrated by the sensitivity to images, the key and the resistibility to various advanced attacks.


Encryption Ciphering Differential attack Exhaustive attack Statistical attack Session key Evolutionary algorithms 


  1. 1.
    Souici, I. Seridi, H., & Aissaoui, Z. (2007). Nouvel algorithme de chiffrement évolutionnaire ACEO. JIG’07. 3èmes Journées internationales sur l’Informatique Graphique. Constantine. Algérie.Google Scholar
  2. 2.
    Souici, I., Aissaoui, Z., & Seridi, H. (2008). Conception et Evaluation d’un Nouvel Algorithme Crypto-évolutionnaire (SSA). COSI’08. Colloque sur l’Optimisation et les Systèmes d’Information. Tizi-Ouzou. Algérie.Google Scholar
  3. 3.
    Katzenbeisser, S., & Petitcolas, F. A. P. (2000). Information hiding techniques for steganography and digital watermarking. London: Artech House.Google Scholar
  4. 4.
    Kahn, D. (1996). The Codebreakers—The story of secret writing. New York: Scribner.Google Scholar
  5. 5.
    Kobayashi, M. (1990). Digital watermarking: Historical roots. Technical report, IBM Research, Tokyo Research Laboratory. Japan.Google Scholar
  6. 6.
    Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
  7. 7.
    Fogel, L., Owens, A., & Walsh, M. (1966). Artificial intelligence through simulated evolution. Chichester, UK: Wiley. In (Jour, 2003).Google Scholar
  8. 8.
    Rechenberg, I. (1973). Evolutions Strategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog. In [Jour, 2003].Google Scholar
  9. 9.
    Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.Google Scholar
  10. 10.
    Koza, J. (1992). Genetic programming. Cambridge, MA: MIT Press.MATHGoogle Scholar
  11. 11.
    Prabhu, D., Buckles, B. P., & Petry, F. E. (2000). Genetic algorithms for scene interpretation from prototypical semantic description. International Journal of Intelligent Systems, 15(10), 901–918.MATHCrossRefGoogle Scholar
  12. 12.
    Grenfenslette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transaction on Systems, Man, and Cybernetics, 16(1), 122–128.CrossRefGoogle Scholar
  13. 13.
    Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In Proceedings of the third international conference on genetic algorithms (ICGA’89), George Mason University, Fairfax, Virginia, USA, June 1989 (pp. 61–69).Google Scholar
  14. 14.
    Bäck, T. (1997). Mutation parameters. Handbook of evolutionary computation. 97/1, E1.2, IOP Publishing Ltd.Google Scholar
  15. 15.
    Hutter, F., Hamadi, Y., Hoos, H. H., & Leyton-Brown, K. (2006). Performance prediction and automated tuning of randomized and parametric algorithms. In CP 2006, number 4204 in LNCS (pp. 213–228). Springer Verlag.Google Scholar
  16. 16.
    Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J. E. (2007). Parameter control in evolutionary algorithms. In F. G. Lobo, C. F. Lima, & Z. Michalewicz (Eds.), Parameter setting in evolutionary algorithms, studies in computational intelligence (pp. 19–46). Springer.Google Scholar
  17. 17.
    Bibai, J., Savéant, P., Schoenauer, M., & Vidal, V. (2010). On the generality of parameter tuning in evolutionary planning. In ACM Genetic and Evolutionary Computation Conference (GECCO-2010) (pp. 241–248). Portland, Oregon: United States.Google Scholar
  18. 18.
    Djeddi, M., Ouahabi, A., Batatia, H., Basarab, A., & Kouamé, D. (2010). Discrete wavelet for multifractal texture classification: Application to medical ultrasound imaging. In IEEE international conference on image processing, Hong Kong.Google Scholar
  19. 19.
    Ouahabi, A. & Ait Aouit, D. (2008). Wavelets and fractals for signal and image analysis. In P. Siarry (Ed.), Optimization in signal and image processing (pp. 45–77). London: ISTE; Hoboken: Wiley.Google Scholar
  20. 20.
    Kerckhoffs, A. (1983). La cryptographie militaire. Journal des sciences militaires, IX, 5–38.Google Scholar
  21. 21.
    Shannon, C. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656–715.MathSciNetMATHGoogle Scholar
  22. 22.
    Stinson, D. (1996). Cryptographie, théorie et pratique. France: International Thomson Publishing.Google Scholar
  23. 23.
    Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1), 3–72.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Matsui, M. (1994). Linear cryptanalysis method for DES cipher. Advances in cryptology, EUROCRYPT’93. Lecture Notes in Computer Science (Vol. 765). Berlin: Springer-Verlag.Google Scholar
  25. 25.
    Ganteaut, A., & Lévy, F. (2001). La cryptologie moderne. L’Armement, 73, 76–83.Google Scholar
  26. 26.
    Leprévost, F. (2000). Les standards cryptographiques du XXIe siècle : AES et IEEE-P1363. Gazette des Mathématiciens - n°85.Google Scholar
  27. 27.
    Omary, F., Tragha, A., Bellaachia, A., Lbekouri, A., & Mouloudi, et. A. (2007). Design and evaluation of two symmetrical evolutionist-based ciphering algorithms. IJCSNS International Journal of Computer Science and Network Security, 7(2), 181–190.Google Scholar
  28. 28.
    Amrani, Z., Chitroub, S., & Boukhari, A. (2007). Cryptage d’Images par Chiffrement de Vigenère Basé sur le Mixage des Cartes Chaotiques. In 4th International conference on computer integrated manufacturing CIP’2007. Algérie.Google Scholar
  29. 29.
    Ghislaine Labouret, introduction à la cryptologie, 1998.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LabSTICGuelma UniversityGuelmaAlgeria
  2. 2.Computer Science DepartmentJijel UniversityJijelAlgeria
  3. 3.CReSTICReimsFrance
  4. 4.LIP6ParisFrance

Personalised recommendations