Advertisement

Mixed analog-digital crossbar-based hardware implementation of sign–sign LMS adaptive filter

  • Farnood Merrikh-Bayat
  • Saeed Bagheri-Shouraki
Article

Abstract

Recently announcement of a physical realization of a fundamental circuit element called memristor by researchers at Hewlett Packard (HP) has attracted so much interest worldwide. Combination of this newly found element with crossbar interconnect technology, opened a new field in designing configurable or programmable electronic systems which can have applications in signal processing and artificial intelligence. In this paper, based on the simple memristor crossbar structure, we will propose a new mixed analog-digital circuit as a hardware implementation of the sign–sign least mean square (LMS) adaptive filter algorithm. In this proposed hardware, any multiplication and addition is performed with infinite precision and there is no necessity for the quantization of the input signal. Since the coefficients of the filter are stored in the switches of the crossbar, they can remain unchanged theoretically for an infinite period of time.

Keywords

Crossbar Adaptive filters Memristor Hardware implementation 

References

  1. 1.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.CrossRefGoogle Scholar
  2. 2.
    Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Steward, D. R., & Williams, R. S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3, 429–433.CrossRefGoogle Scholar
  3. 3.
    Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, CT-18(5), 507–519.CrossRefGoogle Scholar
  4. 4.
    Waser, R., & Aono, M. (2007). Nanoionics-based resitive switching memories. Nature Materials, 6, 833–840.CrossRefGoogle Scholar
  5. 5.
    Kuekes, P. (2008). Material implication: Digital logic with memristors. In Memristor and memristive systems syymposium, 21 Nov 2008.Google Scholar
  6. 6.
    Pershin, Y. V., Fontaine, S. L., & Ventra, M. D. (24 Oct 2008). Memristive model of amoeba’s learning. arXive: 0810.4179v2.Google Scholar
  7. 7.
    Shin, S., Kim, K., & Kang, S. M. (2009). Memristor-based fine resolution resistance and its applications. In ICCCAS, July 2009.Google Scholar
  8. 8.
    Mouttet, B. L. (2009). Proposal for memristors in signal processing. In Nano-net 2008, pp. 11–13.Google Scholar
  9. 9.
    Mouttet, B. L. (2009). Crossbar comparator. US Patent 7,564,262.Google Scholar
  10. 10.
    Mouttet, B. L. (2009). Crossbar waveform driver circuit. US Patent 7,576,565.Google Scholar
  11. 11.
    Cioffi, J. M. (1987). Limited-precision effects in adaptive filtering. IEEE Transactions on circuits and systems, CAS-34(7), 821–833.CrossRefGoogle Scholar
  12. 12.
    Haykin, S. (1991). Adaptive filter theory, 2nd edn. NJ: Prentice-Hall.Google Scholar
  13. 13.
    Treichler, J. R., Johnson, C. R., & Larimore, M. G. (1987). Theory and design of adaptive filters. New York: Wiley Interscience.MATHGoogle Scholar
  14. 14.
    Gitlin, Jr, R. D., Meadors, H. C., & Weinstein, S. B. (1982). The tap-leakage algorithm: An algorithm for the stable operation of a digitally implemented, fractionally spaced adaptive equalizer. The Bell System Technical Journal, 61(8), 1817–1839.Google Scholar
  15. 15.
    Widrow, B. (October, 1960). An adaptive adaline neuron using chemical memristors. Stanford Electronics Laboratories Technical Report 1553-2.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations