Analog Integrated Circuits and Signal Processing

, Volume 66, Issue 2, pp 223–233

A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones

  • Luca Picolli
  • Marco Grassi
  • Andrea Fornasari
  • Piero Malcovati


In this paper an integrated interface circuit for condenser MEMS microphones is presented. It consists of an input buffer followed by a multi-bit (12-levels), analog, second-order ΣΔ modulator and a fully-digital, single-bit, fourth-order ΣΔ modulator, thus providing a single-bit output signal with fourth order noise shaping, compatible with standard audio chipsets. The circuit, supplied with 3.3 V, exhibits a current consumption of 215 μA for the analog part and 95 μA for the digital part. The measured signal-to-noise and distortion ratio (SNDR) is 71 dB, with an input signal amplitude as large as −1.8 dB with respect to full-scale, obtained thanks to the use of a feed-forward architecture in the analog ΣΔ modulator, which relaxes the voltage swing requirements of the operational amplifiers. The test chip, fabricated in a 0.35-μm CMOS process, occupies an area of 3 mm2, including pads.


MEMS microphone ΣΔ modulator Sensor interface circuit Audio integrated circuit 


  1. 1.
    Bajdechi, O., & Huijsing, J. H. (2002). A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE Journal of Solid-State Circuits, 37, 279–285.CrossRefGoogle Scholar
  2. 2.
    Chiang, C. T., & Huang, Y. C. (2009). A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE instrumentation and measurement technology conference (IMTC), pp. 1055–1058.Google Scholar
  3. 3.
    Pernici, S., Stevenazzi, F., & Nicollini, G. (2004). Fully integrated voiceband codec in a standard digital CMOS technology. IEEE Journal of Solid-State Circuits, 39, 1331–1334.CrossRefGoogle Scholar
  4. 4.
    van der Zwan, E. J., & Dijkmans, E. C. (1996). A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE Journal of Solid-State Circuits, 31, 1873–1880.CrossRefGoogle Scholar
  5. 5.
    Potamianos, G., Huang, J., Marcheret, E., Libal, V., Balchandran, R., Epstein, M., Seredi, L., Labsky, M., Ures, L., Black, M., & Lucey, P. (2008). Far field multimodal speech processing and conversational interaction in smart spaces. In: Proceedings of IEEE hands free speech communication and microphone arrays (HSCMA), pp. 119–123.Google Scholar
  6. 6.
    Citakovic, J., Hovesten, P. F., Rocca, G., van Halteren, A., Rombach, P., Stenberg, L. J., Andreani, P., & Bruun, E. (2009). A compact CMOS MEMS microphone with 66dB SNR. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, pp. 350–351.Google Scholar
  7. 7.
    Je, S. S., Kim, J., Kozicki, M. N., & Chae, J. (2009). A directional capacitive MEMS microphone using nano-electrodeposits. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), pp. 96–99.Google Scholar
  8. 8.
    Weigold, J. W., Brosnihan, T. J., Bergeron, J., & Zhang, X. (2006). A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), pp. 86–89.Google Scholar
  9. 9.
    Jawed, S. A., Cattin, D., Gottardi, M., Massari, N., Baschirotto, A., & Simoni, A. (2008). A 828μW 1.8V 80dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of European solid-state circuits conference (ESSCIRC), pp. 442–445.Google Scholar
  10. 10.
    Picolli, L., Grassi, M., Rosson, L., Malcovati, P., & Fornasari, A. (2009). A 1.0 mW, 71 dB SNDR, −1.8dBfs input swing, fourth-order sigma-delta interface circuit for MEMS microphones. In: Proceedings of European solid-state circuits conference (ESSCIRC), pp. 324–327Google Scholar
  11. 11.
    Maloberti, F. (2007). Data converters. The Netherlands: Springer.Google Scholar
  12. 12.
    Temes, G. C., Schreier, R., & Norsworthy, S. R. (1996). Delta-sigma data converters. USA: IEEE Press.Google Scholar
  13. 13.
    Malcovati, P., Brigati, S., Francesconi, F., Maloberti, F., Cusinato, P., & Baschirotto, A. (2003). Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications, 50, 352–364.CrossRefGoogle Scholar
  14. 14.
    Boser, B. E., & Wooley, B. A. (1988). The design of sigma-delta modulation analog-to-digital converters. IEEE Journal of Solid-State Circuits, 23, 1298–1308.CrossRefGoogle Scholar
  15. 15.
    Matsuya, Y., & Yamada, Y. (1994). 1-V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping. IEEE Journal of Solid-State Circuits, 29, 1524–1530.CrossRefGoogle Scholar
  16. 16.
    Ahn, G. C., Chang, D. Y., Brown, M. E., Ozaki, N., Youra, H., Yamamura, K., Hamashita, K., Takasuka, K., Temes, G. C., & Moon, U. K. (2005). A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators. IEEE Journal of Solid-State Circuits, 40, 2398–2407.CrossRefGoogle Scholar
  17. 17.
    Silva, J., Moon, U. K., Steensgaard, J., & Temes, G. C. (2001). Wideband low-distortion delta-sigma ADC topology. Electronics Letters, 37, 737–738.CrossRefGoogle Scholar
  18. 18.
    Nam, K. Y., Lee, S. M., Su, D. K., & Wooley, B. A. (2005). A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion. IEEE Journal of Solid-State Circuits, 40, 1855–1864.CrossRefGoogle Scholar
  19. 19.
    Kwon, S., & Maloberti, F. (2006). A 14 mW multi-bit ΣΔ modulator with 82 dB SNR and 86 dB DR for ADSL2+. In: IEEE international solid state circuits conference (ISSCC) digest of technical papers, pp. 68–69.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Luca Picolli
    • 1
  • Marco Grassi
    • 1
  • Andrea Fornasari
    • 2
  • Piero Malcovati
    • 1
  1. 1.Department of Electrical EngineeringUniversity of PaviaPaviaItaly
  2. 2.National Semiconductor CorporationAssagoItaly

Personalised recommendations