Analog Integrated Circuits and Signal Processing

, Volume 65, Issue 2, pp 171–184 | Cite as

Power consumption of analog circuits: a tutorial

Article

Abstract

A systematic approach to the power consumption of analog circuits is presented. The power consumption is related to basic circuit requirements, as dynamic range, bandwidth, noise figure and sampling speed and is considering basic device and device scaling behavior. Several kinds of circuits are treated, as samplers, amplifiers, filters and oscillators. The objective is to derive lower bounds to power consumption in analog circuits, to be used as design targets when designing power-constrained analog systems.

Keywords

Low power design Fundamental limits Dynamic range Technology scaling Analog building blocks 

References

  1. 1.
    Chandrakasan, A., Sheng, S., & Brodersen, R. (1992). Low-power CMOS digital design. IEEE Journal of Solid-State Circuits, 27(4), 473–484.Google Scholar
  2. 2.
    Chandrakasan, R., & Brodersen, A. (1998). Low-power CMOS design. New York, NY: Wiley-IEEE Press.Google Scholar
  3. 3.
    Vittoz, E. (1980). Micropower IC. In IEEE European Solid-State Circuits Conference, 1980, Vol. 2, Sept 1980, pp. 174–189.Google Scholar
  4. 4.
    Vittoz, E. (1990). Future of analog in the VLSI environment. In IEEE International Symposium on Circuits and Systems, 1990, Vol. 2, May 1990, pp. 1372–1375.Google Scholar
  5. 5.
    Vittoz, E. (1994). Low-power design: Ways to approach the limits. In IEEE International Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC., 1994, Feb 1994, pp. 14–18.Google Scholar
  6. 6.
    Enz, C., & Vittoz E. (1996). CMOS low-power analog circuit design. Designing Low Power Digital Systems, Emerging Technologies (1996), pp. 79–133.Google Scholar
  7. 7.
    Bult, K. (2000). Analog design in deep sub-micron CMOS. In Proceedings of the 26th European Solid-State Circuits Conference, 2000. ESSCIRC’00, Sept. 2000, pp. 126–132.Google Scholar
  8. 8.
    Annema, A.-J., Nauta, B., van Langevelde, R., & Tuinhout, H. (2005). Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State Circuits, 40(1), 132–143.CrossRefGoogle Scholar
  9. 9.
    Steyaert, M., Huijsing, J. H., & van Roermund, A. H. M. (2002). Analog circuit design. Scalable analog circuit design, high speed D/A converters, RF power amplifiers. Boston, MA: Kluwer Academic.Google Scholar
  10. 10.
    Abidi, A., Pottie, G., & Kaiser, W. (2000). Power-conscious design of wireless circuits and systems. Proceedings of the IEEE, 88(10), 1528–1545.CrossRefGoogle Scholar
  11. 11.
    Baltus, P., & Dekker, R. (2000). Optimizing RF front ends for low power. Proceedings of the IEEE, 88(10), 1546–1559.CrossRefGoogle Scholar
  12. 12.
    Sundstrom, T., Murmann, B., & Svensson, C. (2009). Power dissipation bounds for high-speed nyquist analog-to-digital converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(3), 509–518.MathSciNetGoogle Scholar
  13. 13.
    Razavi, B. (2001). Design of analog CMOS integrated circuits. New York, NY: McGraw-Hill Inc.Google Scholar
  14. 14.
    Akita, I., Wada, K., & Tadokoro, Y. (2009). A 0.6-V dynamic biasing filter with 89-dB dynamic range in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 44(10), 2790–2799.CrossRefGoogle Scholar
  15. 15.
    Rabaey, J. M., Chandrakasan, A. P., & Nikolic, B. (2003). Digital integrated circuits: A design perspective (2nd ed). Upper Saddle River, NJ.: Prentice Hall.Google Scholar
  16. 16.
    Razavi, B. (1998). RF microelectronics. Englewood Cliffs, NJ.: Prentice Hall.Google Scholar
  17. 17.
    Janssens, J., & Steyaert, M. (2002). CMOS cellular receiver front-ends: From specification to realization. New York: Kluwer Academic.Google Scholar
  18. 18.
    Buchwald, A., & Martin, K. W. (1995). Integrated fiber-optic receivers. Boston: Kluwer Academic.Google Scholar
  19. 19.
    Sansen, W., & Chang, Z. (1990). Limits of low noise performance of detector readout front ends in CMOS technology. IEEE Transactions on Circuits and Systems, 37(11), 1375–1382.Google Scholar
  20. 20.
    Hajimiri, A., & Lee, T. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.CrossRefGoogle Scholar
  21. 21.
    Leeson, D. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of the IEEE, 54(2), 329–330.CrossRefGoogle Scholar
  22. 22.
    Tiebout, M. (2001). Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid-State Circuits, 36(7), 1018–1024.CrossRefGoogle Scholar
  23. 23.
    Park, S. W., Sanchez-Sinencio, E. (2009). RF oscillator based on a passive RC bandpass filter. IEEE Journal of Solid-State Circuits, 44(11), 3092–3101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations