Analog Integrated Circuits and Signal Processing

, Volume 65, Issue 1, pp 151–156 | Cite as

Adaptive gain and delay mismatch cancellation for LINC transmitter

  • Corinne Berland
  • Jean-François Bercher
  • Olivier Venard
Mixed Signal Letter


Linear amplification with Nonlinear Component (LINC) transmitter architecture is an efficient solution for high efficiency amplification of signals. Nonetheless, this solution suffers both from gain impairment and delay mismatch between the two signal paths. Indeed, a mismatch in propagation time between the paths degrades the quality of the transmit signal but also disrupts the convergence of the gain correction algorithm resulting in a degradation of its performance. In this paper, we present an adaptive algorithm based on a gradient descent formulation for the identification and correction of these delays. We also demonstrate its effectiveness when applied prior to the gain adjustment procedure. The identification approach is preferred here, to ensure monitoring facilities.


Radio transmitters Power amplifiers Adaptive signal processing Delay filters Delay estimation Nonlinear distortion 



The authors would like to thank Prof P. Gamand and S. Kowlgi Srinivasan for their contributions for this paper.


  1. 1.
    Berland, C., Bercher, J.-F., & Venard, O. (2008). Digital signal processing techniques to compensate for RF imperfections in advanced transmitter architectures, EuWiT 2008. European Conference on Wireless Technology, pp. 41–44.Google Scholar
  2. 2.
    Zhang, X., Larson, L. E., Asbeck, P. M., & Nanawa, P. (2001). Gain/phase imbalance-minimization techniques for LINC transmitters. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2507–2516.CrossRefGoogle Scholar
  3. 3.
    Zhang, X., & Larson, L. E. (2000). Gain and phase error-free LINC transmitter. IEEE Transactions on Vehicular Technology, 49(5), 1986–1994.CrossRefGoogle Scholar
  4. 4.
    Garcia, P., Ortega, A., de Mingo, J., & Valdovinos, A. (2005). Nonlinear distortion cancellation using LINC transmitters in OFDM systems. IEEE Transactions on Broadcasting, 51(1), 84–93.CrossRefGoogle Scholar
  5. 5.
    Chandrasekaran, R., Gandhi, R., Kolanek, J. C., Shynk, J. J., & Thomas, A. L. (2001). Adaptive algorithms for calibrating a LINC amplifier, RAWCON 2001. IEEE Radio and Wireless Conference, 241–244.Google Scholar
  6. 6.
    Cox, D. (1974). Linear amplification with nonlinear components. IEEE Transactions on Communications, 22(12), 1942–1945.CrossRefGoogle Scholar
  7. 7.
    Shi, B., & Sundström, L. (2002). Voltage-translinear based CMOS signal component separator chip for linear LINC transmitters. Analog Integrated Circuits and Signal Processing, 30(1), 31–39CrossRefGoogle Scholar
  8. 8.
    Gerhard, W., & Knoechel, R. H. (2005). LINC digital component separator for single and multicarrier W-CDMA signals. IEEE Transactions on Microwave Theory and Techniques, 53(1), 274–282CrossRefGoogle Scholar
  9. 9.
    GPP ETSI TS 125 101 V7.6.0 (2006-12). Universal Mobile Telecommunications System (UMTS); User Equipment (UE) radio transmission and reception (FDD)Google Scholar
  10. 10.
    Garcia, P., de Mingo, J., Valdovinos, A., & Ortega, A. (2005). An adaptive digital method of imbalances cancellation in LINC transmitters. IEEE Transactions on Vehicular Technology, 54(3), 879–888.CrossRefGoogle Scholar
  11. 11.
    Farrow, C. W. (1988). A continuous variable digital delay element. Proc. IEEE Int. Symp. Circuits Systems, 2641–2645.Google Scholar
  12. 12.
    Candan, C. (2007). An efficient filtering structure for Lagrange interpolation. IEEE Signal Processing Letters, 14(1), 17–19.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bercher, J.-F., & Berland, C. (2008). Envelope and phase delays correction in an EER radio architecture. Analog Integrated Circuits and Signal Processing, 55(1), 21–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Corinne Berland
    • 1
    • 2
  • Jean-François Bercher
    • 3
  • Olivier Venard
    • 4
  1. 1.LaMIPS, Laboratoire commun NXP-CRISMATUMR 6508 CNRS ENSICAEN UCBN. 2Caen Cedex 5France
  2. 2.Dept. Systèmes ElectroniquesESIEE ParisNoisy-Le-GrandFrance
  3. 3.Université Paris-Est, LabInfo-IGM, ESIEE Paris, Cité DescartesNoisy le GrandFrance
  4. 4.Dept TelecommunicationUniversité Paris-Est, ESIEE Paris, Cité DescartesNoisy le GrandFrance

Personalised recommendations