Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 65, Issue 1, pp 123–129 | Cite as

First-order voltage-mode all-pass filter employing one active element and one grounded capacitor

  • Dalibor BiolekEmail author
  • Viera Biolkova
Article

Abstract

A new circuit topology of first-order voltage-mode all-pass filter providing high-input and low-output impedances is described. The filter consists of only one grounded capacitor and one active element, namely VD-DIBA (Voltage Differencing-Differential Input Buffered Amplifier), with the possibility of electronically tuning the natural frequency. The filter is assembled from commercial integrated circuits, and the frequency responses measured are compared with the theoretical characteristics.

Keywords

All-pass filter VD-DIBA Voltage mode 

Notes

Acknowledgments

Research described in the paper was supported by the Czech Grant Agency under grants Nos. 102/08/0581, 102/09/1628, and by the research programmes of BUT No. MSM0021630503 and UD Brno No. MO FVT0000403, Czech Republic.

References

  1. 1.
    Ponsonby, J. E. B. (1966). Active all-pass filter using a differential operational amplifier. Electronics Letters, 2, 134–135.CrossRefGoogle Scholar
  2. 2.
    Genin, R. (1968). Realization of an all-pass transfer function using operational amplifiers. Proceedings of the IEEE, 56, 1746–1747.CrossRefGoogle Scholar
  3. 3.
    Aronhime, P., & Budak, A. (1969). An operational amplifier all-pass network. Proceedings of the IEEE, 57, 1677–1678.CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, B. B. (1969). Realization of an all-pass transfer function. Proceedings of the IEEE, 57, 2092–2093.CrossRefGoogle Scholar
  5. 5.
    Soliman, A. M. (1973). Realization of operational amplifier all-pass networks. Electronics Letters, 9, 67–68.CrossRefGoogle Scholar
  6. 6.
    Donald, T. C., David, J. C., & Jason, R. G. (1997). A high frequency integrable band-pass filter configuration. IEEE Transactions on Circuits and Systems-II, 44, 856–860.Google Scholar
  7. 7.
    Soliman, A. M. (1973). Inductorless realization of an all-pass transfer function using the current conveyor. IEEE Transactions on Circuit Theory, 20(1), 80–81.CrossRefGoogle Scholar
  8. 8.
    Soliman, A. M. (1973). Another realization of an all-pass or a notch filter using a current conveyor. International Journal of Electronics, 35, 135–136.CrossRefGoogle Scholar
  9. 9.
    Horng, J. W. (2005). Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Computers & Electrical Engineering, 31, 81–92.zbMATHCrossRefGoogle Scholar
  10. 10.
    Cam, U. (2005). A new transadmittance type first-order allpass filter employing single third generation current conveyor. Analog Integrated Circuits and Signal Processing, 43, 97–99.CrossRefGoogle Scholar
  11. 11.
    Maheshwari, S., & Khan, I. A. (2001). Novel first-order allpass sections using a single CCIII. International Journal of Electronics, 88, 773–778.CrossRefGoogle Scholar
  12. 12.
    Maheshwari, S., Khan, I. A., & Mohan, J. (2006). Grounded capacitor first-order filters including canonical forms. Journal of Circuits, Systems, and Computers, 15(2), 289–300.CrossRefGoogle Scholar
  13. 13.
    Ibrahim, M. A., Kuntman, H., & Cicekoglu, O. (2003). First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circuits Systems Signal Processing, 22(5), 525–536.zbMATHCrossRefGoogle Scholar
  14. 14.
    Ibrahim, M. A., Kuntman, H., Ozcan, S., Suvak, O., & Cicekoglu, O. (2004). New first-order inverting-type second-generation current-conveyor-based all-pass sections including canonical forms. Electrical Engineering, 86, 299–301.CrossRefGoogle Scholar
  15. 15.
    Maheshwari, S. (2004). New voltage and current-mode APS using current controlled conveyor. International Journal of Electronics, 91, 735–743.CrossRefGoogle Scholar
  16. 16.
    Maheshwari, S. (2008). A canonical voltage-controlled VM-APS with a grounded capacitor. Circuits, Systems, and Signal Processing, 27, 123–132.CrossRefGoogle Scholar
  17. 17.
    Metin, B., Cicekoglu, O., & Pal, K. (2007). DDCC based all-pass filters using minimum number of passive elements. Proceedings of the MWSCAS, 2007, 518–521.Google Scholar
  18. 18.
    Liu, S., & Hwang, C. S. (1997). Realization of current-mode filters using single FTFN. International Journal of Electronics, 82, 499–502.CrossRefGoogle Scholar
  19. 19.
    Higashimura, M. (1991). Current-mode allpass filter using FTFN with grounded capacitor. Electronics Letters, 27, 1182–1183.CrossRefGoogle Scholar
  20. 20.
    Cam, U., Cicekoglu, O., Gulsoy, M., & Kuntman, H. (2000). New voltage and current mode first-order all-pass filters using single FTFN. Frequenz, 7(8), 177–179.Google Scholar
  21. 21.
    Tangsrirat, W. (2008). Electronically tunable multi-terminal floating nullor and its applications. Radioengineering, 17(4), 3–7.Google Scholar
  22. 22.
    Kilinc, S., & Cam, U. (2004). Current-mode first-order allpass filter employing single current operational amplifier. Analog Integrated Circuits and Signal Processing, 41, 47–53.CrossRefGoogle Scholar
  23. 23.
    Acosta, L., R-Angulo, J., L-Martín, A. J., & Carvajal, R. G. (2009). Low-voltage first-order fully differential CMOS all-pass filter with programmable pole-zero. Electronics Letters, 45(8), 385–386.CrossRefGoogle Scholar
  24. 24.
    Cam, U., Cakir, C., & Cicekoglu, O. (2004). Novel transimpedance type first-order all-pass filter using single OTRA. International Journal of Electronics and Communications (AEÜ), 58, 296–298.CrossRefGoogle Scholar
  25. 25.
    Toker, A., Ozoguz, S., Cicekoglu, O., & Acar, C. (2000). Current-mode allpass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 47, 949–954.CrossRefGoogle Scholar
  26. 26.
    Metin, B., Cicekoglu, O., & Pal, K. (2008). Voltage mode all-pass filter with a single current differencing buffered amplifier. Proceedings of the MWSCAS, 2008, 734–737.Google Scholar
  27. 27.
    Maheshwari, S. (2007). Voltage-mode all-pass filters including minimum component count circuits. Active and Passive Electronic Components, 5 p (Article ID 79159).Google Scholar
  28. 28.
    Lahiri, A. (2009). Comment on “Voltage-mode all-pass filters including minimum component count circuits. Active and Passive Electronic Components, 4 p (Article ID 595324).Google Scholar
  29. 29.
    Keskin, A. Ü. (2006). Multi-function biquad using single CDBA. Electrical Engineering, 88, 353–356. doi: 10.1007/s00202-004-0289-4.CrossRefGoogle Scholar
  30. 30.
    Uygur, A., & Kuntman, H. (2006). Low-voltage current differencing transconductance amplifier in a novel allpass configuration. In Proceedings of the 13th IEEE mediterranean electrotechnical conference (MELECON’06) (pp. 23–26).Google Scholar
  31. 31.
    Keskin, A. Ü., & Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings: Circuits Devices and Systems, 153(3), 214–218.CrossRefGoogle Scholar
  32. 32.
    Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). CDTA based transimpedance type first-order all-pass filter. WSEAS Transactions on Electronics, 5(6), 280–284.Google Scholar
  33. 33.
    Tanjaroen, W., & Tangsrirat, W. (2008). Resistorless current-mode first-order allpass filter using CDTAs. In Proceedings of the International Conference on ECTI-CON, 2, 721–724.Google Scholar
  34. 34.
    Tanaphatsiri, C., Jaikla, W., & Siripruchyanun, M. (2008). An electronically controllable voltage-mode first-order all-pass filter using only single CCCDTA. In Proceedings of the 2008 international symposium on communications and information technologies (ISCIT 2008) (pp. 305–309).Google Scholar
  35. 35.
    Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). High output impedance current-mode allpass inverse filter using CDTA. Indian Journal of Pure & Applied Physics, 46, 893–896.Google Scholar
  36. 36.
    Keskin, A. Ü., Pal, K., & Hancioglu, E. (2008). Resistorless first-order all-pass filter with electronic tuning. International Journal of Electronics and Communications (AEÜ), 62, 304–306.CrossRefGoogle Scholar
  37. 37.
    Lahiri, A., & Chowdhury, A. (2009). A novel first-order current-mode all-pass filter using CDTA. Radioengineering, 18(3), 300–305.Google Scholar
  38. 38.
    Biolek, D., & Biolkova, V. (2009). Allpass filter employing one grounded capacitor and one active element. Electronics Letters, 45(16), 807–808.CrossRefGoogle Scholar
  39. 39.
    Biolek, D. (2003). CDTA-Building block for current-mode analog signal processing. In Proceedings of the ECCTD’03, III (pp. 397–400).Google Scholar
  40. 40.
    Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17(4), 15–34.Google Scholar
  41. 41.
    OPA860—Wide Bandwidth Operational Transconductance Amplifier (OTA) and Buffer. Texas Instruments, SBOS331C-June 2005-Revised August 2008, www.ti.com.
  42. 42.
    Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1995). Current-controlled bandpass filter based on translinear conveyor. Electronics Letters, 31(20), 1727–1728.CrossRefGoogle Scholar
  43. 43.
    AD8129/AD8130. (2005). Low cost 270 MHz differential receiver amplifiers. Analog Devices, Review C, www.analog.com.
  44. 44.
    Bajer, J., & Biolek, D. (2009). Digitally controlled quadrature oscillator employing two ZC-CG-CDBAs. Proceedings of the International Conference on EDS-IMAPS, 2009, 298–303.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Microelectronics/EEBrno University of Technology/University of Defence BrnoBrnoCzech Republic
  2. 2.Department of Radio ElectronicsBrno University of TechnologyBrnoCzech Republic

Personalised recommendations