Generation of current conveyor based oscillators using nodal admittance matrix expansion

Article

Abstract

A new approach in the systematic synthesis of current conveyor based active RC canonic oscillators is given. The synthesis procedure is based on the generalized systematic synthesis framework using admittance matrix expansion. The resulting derived oscillators include many novel oscillators, using various types of current conveyors and inverting current conveyors. The oscillators considered in this paper uses the minimum number of passive elements namely two capacitors and three resistors necessary to have independent control on the condition of oscillation and on the frequency of oscillation. The generated oscillators employ two grounded capacitors and have the advantage of their ability to absorb parasitic element effects. Three classes are considered in this paper, class I oscillators have a common node between one of the capacitors and one of the two grounded resistors. Class II oscillators have a common node between one of the capacitors and the floating resistor. Class III has all three resistors being grounded and one of them shares a node with one of the capacitors. It should be noted that this is the first paper in the literature to use nodal admittance matrix expansion in the generation of current conveyor oscillators. Spice simulation results are included to support the theory. The proposed method can be generalized to other active devices.

Keywords

Nodal admittance matrix synthesis Nullator Norator Pathological current and voltage mirrors Oscillators 

Notes

Acknowledgments

The author thanks the reviewers for the useful comments.

References

  1. 1.
    Bhattacharyya, B. B., Sundaramurthy, M., & Swamy, M. N. S. (1981). Systematic generation of canonic sinusoidal RC active oscillators. IEE Proceedings, 128(3), 114–126.Google Scholar
  2. 2.
    Boutin, N. (1984). On the identification and design of single amplifier single resistance controlled oscillators. IEEE Transactions on Circuits and Systems, 31(12), 1046–1049.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bhushan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3, 148–149.CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, B. B., Sundaramurthy, M., & Swamy, M. N. S. (1980). Realization of tunable RC-active oscillators using grounded capacitors and voltage amplifiers. International Journal of Circuit Theory and Applications, 8(5), 355–371.CrossRefGoogle Scholar
  5. 5.
    Horng, H. W., Chang, C. W., & Lee, M. H. (1997). Single element controlledsinusoidal oscillators using CCIIs. International Journal of Electronic Healthcare, 83(6), 831–836.Google Scholar
  6. 6.
    Gupta, S. S., & Senani, R. (2006). New single resistance controlled oscillator configurations using unity gain cells. Analog Integrated Circuits and Signal Processing, 46, 111–119.CrossRefGoogle Scholar
  7. 7.
    Tao, Y., & Fidler, J. K. (2000). Electronically tunable dual-OTA second-order sinusoidal oscillators/filters with non-interacting controls: A systematic synthesis approach. IEEE Transactions on Circuits and Systems I, 47(2), 117–129.CrossRefGoogle Scholar
  8. 8.
    Linares-Barranco, B., Rodriguez-Vazquez, A., Sanchez-Sinencio, E., & Huertas, J. L. (1992). Generation, design and tuning of OTA-C high frequency sinusoidal oscillators. IEE Proceedings, 139(5), 557–568.Google Scholar
  9. 9.
    Senani, R., Tripathi, M. P., Bhaskar, D. R., & Banerjee, A. K. (1990). Systematic generation of OTA-C sinusoidal oscillators. Electronics Letters, 26(18), 1457–1459.CrossRefGoogle Scholar
  10. 10.
    Senani, R., & Gupta, S. S. (1997). Synthesis of single-resistance-controlled oscillators using CFOAs: Simple state variable approach. IEE Proceeding on Circuits, Devices and Systems, 144(2), 104–106.CrossRefGoogle Scholar
  11. 11.
    Sedra, A. S., & Smith, K. C. (1970). A second generation current conveyor and its applications. IEEE Transactions Circuit Theory, CT-17(1), 132–134.CrossRefGoogle Scholar
  12. 12.
    Soliman, A. M. (1975). Simple sinusoidal active RC oscillators. International Journal of Electronics, 39(4), 455–458.CrossRefGoogle Scholar
  13. 13.
    Svoboda, J. A. (1989). Current conveyors operational amplifiers and nullors. IEE Proceeding on Circuits, Devices and Systems, 136(6), 317–322.CrossRefGoogle Scholar
  14. 14.
    Soliman, A. M. (1998). New grounded capacitor current mode oscillators using single output CCIIs. Journal of Circuits Systems and Computers, 8(3), 363–378.CrossRefGoogle Scholar
  15. 15.
    Martinez, P. A., Celma, S., & Gutierrez, I. (1995). Wien type oscillators using CCII+, Analog Integrated Circuits and Signal Processing 7, 139–147–315.Google Scholar
  16. 16.
    Celma, S., Martinez, P. A., & Carlosena, A. (1994). Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Proceeding on Circuits, Devices and Systems, 141(6), 493–497.CrossRefGoogle Scholar
  17. 17.
    Martınez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transactions on Circuits and Systems I, 46(11), 1386–1390.CrossRefGoogle Scholar
  18. 18.
    Soliman, A. M. (2000). Current feedback operational amplifier based oscillators. Analog Integrated Circuits and Signal Processing, 23(1), 45–55.CrossRefGoogle Scholar
  19. 19.
    Soliman, A. M. (1999). Synthesis of grounded capacitor and grounded resistor oscillators. Journal of Franklin Institute, 336(4), 735–746.MATHCrossRefGoogle Scholar
  20. 20.
    Soliman, A. M. (1998). Current mode CCII oscillators using grounded capacitors and resistors. International Journal of Circuit Theory and Applications, 26(5), 431–438.MATHCrossRefGoogle Scholar
  21. 21.
    Haigh, D. G., Clarke, T. J. W., & Radmore, P. M. (2006). Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Transactions on Circuits and Systems I, Regarding Papers, 53(9), 2011–2024.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Haigh, D. G. (2006). A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Transactions on Biomedical Circuits and Systems. I, Regarding Papers, 53(12), 2715–2728.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Haigh, D. G., Tan, F. Q., & Papavassiliou, C. (2005). Systematic synthesis of active-RC circuit building-blocks. Analog Integrated Circuits and Signal Processing, 43(3), 297–315.CrossRefGoogle Scholar
  24. 24.
    Haigh, D. G., & Radmore, P. M. (2006). Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Transactions on Biomedical Circuits and Systems. I, Regarding Papers, 53(10), 2214–2223.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Carlin, H. J. (1964). Singular network elements. IEEE Transactions on Circuits Theory, 11(1), 67–72.Google Scholar
  26. 26.
    Awad, I. A., & Soliman, A. M. (1999). Inverting second generation current conveyors: The missing building blocks, CMOS realizations and applications. International Journal of Electronic Healthcare, 86(4), 413–432.Google Scholar
  27. 27.
    Awad, I. A., & Soliman, A. M. (2002). On the voltage mirrors and the current mirrors. Analog Integrated Circuits and Signal Processing, 32(1), 79–81.CrossRefGoogle Scholar
  28. 28.
    Awad, I. A., & Soliman, A. M. (2000). A new approach to obtain alternative active building blocks realizations based on their ideal representations. Frequenz, 54(4), 290–299.Google Scholar
  29. 29.
    Saad, R. A., & Soliman, A. M. (2008). Generation, modeling, and analysis of CCII−. Based gyrators using the generalized symbolic framework for linear active circuits. International Journal of Circuit Theory and Applications, 36(3), 289–309.MATHCrossRefGoogle Scholar
  30. 30.
    Saad, R. A., & Soliman, A. M. (2008). Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 55(10), 2726–2735.Google Scholar
  31. 31.
    Saad, R. A., & Soliman, A. M. (2008). A new approach for using the pathological mirror elements in the ideal representation of active devices, International Journal of Circuit Theory and applications. doi:10.1002/cta.534.
  32. 32.
    Elwan, H. O., & Soliman, A. M. (1997). Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings-Circuits, Devices and Systems, 144(3), 195–200.CrossRefGoogle Scholar
  33. 33.
    Chiu, W., Liu, S. I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings-Circuits, Devices and Systems, 143(2), 91–96.MATHCrossRefGoogle Scholar
  34. 34.
    Elwan, H. O., Mahmoud, S. A., & Soliman, A. M. (1995). Voltage controlled square law grounded MOS resistor. Electronic Engineering, 67, 34–38.Google Scholar
  35. 35.
    Mahmoud, S. A., Elwan, H. O., & Soliman, A. M. (1997). Grounded MOS resistor. Electronic Engineering, 69, 22–24.Google Scholar
  36. 36.
    Soliman, A. M. (1996). Linear transconductor-multiplier using matched pair of MOS transistors and a current conveyor. Frequenz, 50, 292–293.Google Scholar
  37. 37.
    Wang, Z. (1990). Current controlled linear MOS earthed and floating resistors and their applications. IEE Proceedings-Circuits, Devices and Systems, 137, 479–481.CrossRefGoogle Scholar
  38. 38.
    Sakurai, S., & Ismail, M. (1992). CMOS square-law programmable floating resistor independent of the threshold voltage. IEEE Transactions on Biomedical Circuits Systems CAS-II, 39, 565–574.CrossRefGoogle Scholar
  39. 39.
    Elwan, H. O., Mahmoud, S. A., & Soliman, A. M. (1996). CMOS voltage- controlled floating resistor. International Journal of Electronics, 81, 571–576.CrossRefGoogle Scholar
  40. 40.
    Soliman, A. M., & Elwakil, A. S. (1999). Wien oscillators using current conveyors. Computers & Electrical Engineering, 25, 45–55.CrossRefGoogle Scholar
  41. 41.
    Maneechukate, T., Koseeyaporn, J., Wardkein, P., & Koseeyaporn, P. (2008). Wide band amplitude control of the second order oscillator circuit. AEU—International Journal of Electronics and Communications, 62(9), 666–673.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentCairo UniversityGizaEgypt

Personalised recommendations