Analog Integrated Circuits and Signal Processing

, Volume 64, Issue 3, pp 223–231 | Cite as

60 GHz amplifier employing slow-wave transmission lines in 65-nm CMOS

  • Dan Sandström
  • Mikko Varonen
  • Mikko Kärkkäinen
  • Kari Halonen


A three-stage V-band amplifier implemented in 65-nm baseline CMOS technology is presented in this paper. Slow-wave coplanar waveguides are used for matching and interconnects to study the benefits of using this line type in amplifier design. Measured power gain, noise figure and 1 dB output compression point at 60 GHz are 13 dB, 6.3 dB and +4 dBm, respectively. The amplifier has 19.6 GHz of 3 dB bandwidth, thus covering entirely the unlicensed band around 60 GHz. The performance is achieved with a 1.2 V supply and 45 mA DC current consumption.


CMOS millimeter-wave integrated circuits MMIC amplifiers V-band Slow-wave transmission lines 



The authors would like to thank Hannu Hakojärvi and Mikko Kantanen for on-wafer measurements at MilliLab, The Millimetre Laboratory of Finland. This work was funded by Tekes, Finnish Funding Agency for Technology and Innovation under Brawe-project.


  1. 1.
    Doan, C. H., Emami, S., Niknejad, A. M., & Brodersen, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40(1), 144–155.CrossRefGoogle Scholar
  2. 2.
    Cheung, T. S. D., Long, J. R., Vaed, K., Volant, R., Chinthakindi, A., Schnabel, C. M., Florkey, J., & Stein, K. (2003). On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction. In Proceedings of IEEE international solid-state circuits conference on digest of technical papers (Vol. 1, pp. 396–501).Google Scholar
  3. 3.
    Varonen, M., Kärkkäinen, M., Kantanen, M., & Halonen, K. (2008). Millimeter-wave integrated circuits in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 43(9), 1991–2002.CrossRefGoogle Scholar
  4. 4.
    Eisenstadt, W., & Eo, Y. (1992). S-parameter-based IC interconnect transmission line characterization. IEEE Transactions on Components Hybrids Manufacturing Technology, 15(4), 483–490.CrossRefGoogle Scholar
  5. 5.
    Varonen, M., Kärkkäinen, M., & Halonen, K. A. I. (2007). Millimeter-wave amplifiers in 65-nm CMOS. In Proceedings of European solid-state circuits conference (pp. 280–283).Google Scholar
  6. 6.
    Cohen, E., Ravid, S., & Ritter, D. (2008). An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio. Radio frequency integrated circuits symposium (RFIC). IEEE (pp. 61–64).Google Scholar
  7. 7.
    Pellerano, S., Palaskas, Y., & Soumyanath, K. (2007). A 64 GHz 6.5 dB NF 15.5 dB gain LNA in 90 nm CMOS. In Proceedings of European solid-state circuits conference (pp. 352–355).Google Scholar
  8. 8.
    Martineau, B., Cathelin, A., Danneville, F., Kaiser, A., Dambrine, G., Lepilliet, S., Gianesello, F., & Belot, D. (2007). 80 GHz low noise amplifiers in 65nm CMOS SOI. In Proceedings of European solid-state circuits conference (pp. 348–351).Google Scholar
  9. 9.
    Vähä-Heikkilä, T., Lahdes, M., Kantanen, M., Karttaavi, T., & Tuovinen, J. (2002). Very wideband automated on-wafer noise figure and gain measurements at 50–110 GHz. The European Gallium Arsenide & related III-V compounds applications symposium (pp. 233–236).Google Scholar
  10. 10.
    Sayag, A., Levin, S., Regev, D., Zfira, D., Shapira, S., Goren, D., & Ritter, D. (2008). A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS Technology. In IEEE radio frequency integrated circuits symposium (pp. 373–376).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dan Sandström
    • 1
  • Mikko Varonen
    • 1
  • Mikko Kärkkäinen
    • 1
  • Kari Halonen
    • 1
  1. 1.Department of Micro and Nanosciences/SMARAD-2Helsinki University of TechnologyEspooFinland

Personalised recommendations