Design of tunable biquadratic filters employing CCCIIs: state variable block diagram approach

Article

Abstract

A state variable block diagram method is given for the realization of universal biquadratic transfer functions employing second-generation current-controlled conveyors (CCCIIs). Using minimum number of passive components and properly adjusting the bias currents of CCCIIs, the proposed circuits can realize all the tunable frequency standard filter functions: high-pass, band-pass, low-pass, notch-pass, and all-pass by choosing appropriate input branches without changing the passive elements. These presented circuits are in current-mode and voltage-mode separately. The non-ideality analyses of these configurations are given. Additionally, a high-order low-pass filter derived from the proposed voltage-mode biquadratic filter is introduced. PSPICE simulation results are included to verify the theory.

Keywords

State variable block diagram Biquadratic filter CCCII Current-mode Voltage-mode High-order filter 

References

  1. 1.
    Fleischer, P. (1976). Sensitivity minimization in a single amplifier biquad circuit. IEEE Transactions on Circuits and Systems, 23(1), 45–55. doi:10.1109/TCS.1976.1084125.CrossRefGoogle Scholar
  2. 2.
    Fleischer, P. E., & Tow, J. (1973). Design formulas for biquad active filters using three operational amplifiers. Proceedings of the IEEE, 61(5), 662–663. doi:10.1109/PROC.1973.9124.CrossRefGoogle Scholar
  3. 3.
    Sasikumar, M., Rao, K. R., & Reddy, M. A. (1983). Active compensation in the switched-capacitor biquad. Proceedings of the IEEE, 71(8), 1008–1009. doi:10.1109/PROC.1983.12703.CrossRefGoogle Scholar
  4. 4.
    Horng, J. W. (2004). Voltage-mode universal biquadratic filter using two otas. Active and Passive Electronic Components, 27(2), 85–89. doi:10.1080/0882751031000116160.CrossRefGoogle Scholar
  5. 5.
    Chang, C. M., & Pai, S. K. (2000). Universal current-mode OTA-C biquad with the minimum components. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(8), 1235–1238. doi:10.1109/81.873877.CrossRefGoogle Scholar
  6. 6.
    Bhaskar, D. R., Singh, A. K., Sharma, R. K., & Senani, R. (2005). New OTA-C universal current-mode trans-admittance biquads. IEICE Electronics Express, 2(1), 8–13. doi:10.1587/elex.2.8.CrossRefGoogle Scholar
  7. 7.
    Chang, C. M. (1999). New Multifunction OTA-C Biquads. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(6), 820–824. doi:10.1109/82.769791.CrossRefGoogle Scholar
  8. 8.
    Chang, C. M. (2006). Analytical synthesis of the digitally programmable voltage-mode OTA-C universal biquad. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(8), 607–611. doi:10.1109/TCSII.2006.876411.CrossRefGoogle Scholar
  9. 9.
    Bhaskar, D. R., Sharma, V. K., Monis, M., & Rizvi, S. M. I. (1999). New current-mode universal biquad filter. Microelectronics Journal, 30(9), 837–839. doi:10.1016/S0026-2692(99)00019-1.CrossRefGoogle Scholar
  10. 10.
    Wang, H. Y., & Lee, C. T. (2001). Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(4), 409–413.CrossRefGoogle Scholar
  11. 11.
    Tu, S. H., Chang, C. M., & Liao, K. P. (2002). Novel versatile insensitive universal current-mode biquad employing two-second-generation current conveyors. International Journal of Electronics, 89(12), 897–903. doi:10.1080/0020721031000121262.CrossRefGoogle Scholar
  12. 12.
    Singh, A. K., & Senani, R. (2002). A new four-cc-based configuration for realizing a voltage-mode biquad filters. Journal of Circuits, Systems, and Computers, 11(3), 213–218.CrossRefGoogle Scholar
  13. 13.
    Ozcan, S., Cicekoglu, O., & Kuntman, H. (2003). Multi-input single-output filter with reduced number of passive elements employing single current conveyor. Computers & Electrical Engineering, 29(1), 45–53. doi:10.1016/S0045-7906(01)00024-6.CrossRefGoogle Scholar
  14. 14.
    Horng, J. W. (2001). High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 996–997. doi:10.1109/82.974791.CrossRefGoogle Scholar
  15. 15.
    Karybakas, C. A., & Papazoglou, C. A. (1996). Current-mode CCII-based biquadratic filters offering electronic frequency shifting. In Proceedings of ICECS’96, 1, 128–131.Google Scholar
  16. 16.
    Papazoglou, C. A., & Karybakas, C. A. (1997). Non-interacting electronically tunable CCII-based current-mode biquadratic filters. Circuits Devices and Systems, 144(3), 178–184. doi:10.1049/ip-cds:19971078.CrossRefGoogle Scholar
  17. 17.
    Karybakas, C. A., & Papazoglou, C. A. (1999). Low-sensitive CCII-based biquadratic filters offering electronic frequency shift. IEEE Transactions on Circuits and Systems II, 46(5), 527–539. doi:10.1109/82.769801.CrossRefGoogle Scholar
  18. 18.
    Sun, Y., & Jefferies, B. (1998). Current-mode biquadratic filters using dual output current conveyors. In Proceedings of the fifth IEEE international conference on electronic circuits and systems, Vol. 3, pp. 135–138.Google Scholar
  19. 19.
    Ghallab, Y. H., & Elsaid, M. (2000). A novel universal voltage-mode filter with three inputs and single output using only two operational floating current conveyors. In Proceedings of the 12th International Conference on 31 Oct–Nov 2000, pp. 95–98.Google Scholar
  20. 20.
    Senani, R., & Singh, A. K. (2002). A new universal current-mode biquad filter. Frequency, 56, 55–59.Google Scholar
  21. 21.
    Chang, C. M. B., Hashimi, A., Wang, M. C. L., & Hung, C. W. (2003). Single fully differential current conveyor biquad filters. Circuits Devices and Systems, 150(5), 394–398. doi:10.1049/ip-cds:20030468.CrossRefGoogle Scholar
  22. 22.
    Temizyurek, C., & Myderrizi, I. (2004). A novel three-input one-output voltage-mode universal filter using differential difference current conveyor (DDCC). In Proceedings of the 12th IEEE Mediterranean, Vol. 1, pp. 103–106.Google Scholar
  23. 23.
    Senani, R., Singh, V. K., Singh, A. K., & Bhaskar, D. R. (2005). Tunable current-mode universal biquads employing only three MOCCs and all grounded passive elements: Additional new realizations. Frequency, 59, 220–224.Google Scholar
  24. 24.
    Horng, J. W. (2005). Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Computers & Electrical Engineering, 31(6), 190–202. doi:10.1016/j.compeleceng.2005.03.002.MATHCrossRefGoogle Scholar
  25. 25.
    Chang, C. M., & Chen, H. P. (2005). Single FDCCII-based tunable universal voltage-mode filter. Circuits, Systems, and Signal Processing, 24(2), 221–227.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Chen, H. P. (2007). Universal voltage-mode filters using only plus-type DDCCs. Analog Integrated Circuits and Signal Processing, 50(2), 137–139. doi:10.1007/s10470-006-9005-9.CrossRefGoogle Scholar
  27. 27.
    Horng, J. W., Hou, C. L., Chang, C. M., Chou, H. P., & Lin, C. T. (2006). High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits, Systems, and Signal Processing, 25(6), 767–777.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sagbas, M., & Koksal, M. (2006). An electronically tunable voltage-mode universal filter using two current conveyors. Research in Microelectronics and Electronics, 2006, 137–140. doi:10.1109/RME.2006.1689915.CrossRefGoogle Scholar
  29. 29.
    Katoh, T., Tsukutani, T., Sumi, Y., & Fukui, Y. (2006). Electronically tunable current-mode universal filter employing CCCIIs and grounded capacitors. Circuits Systems and Signal Processing, 25, 701–713.CrossRefGoogle Scholar

Copyright information

© bSpringer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Electronics and Information DepartmentWuhan UniversityWuhanChina

Personalised recommendations