Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs

Article

Abstract

A lossless floating inductance has been simulated using two differential voltage current conveyors, two resistors and one grounded capacitor. The proposed floating inductance needs not component matching condition. Base on the proposed floating inductance as building block, a new voltage-mode universal biquadratic filter with one input and five outputs can be obtained. The proposed universal biquad uses two differential voltage current conveyors, three resistors and two grounded capacitors. All standard filter functions; highpass, bandpass, lowpass, notch and allpass can be obtained, simultaneously, without changing the passive elements. The proposed universal biquad has the features of using only grounded capacitors and orthogonal controllable of resonance angular frequency and quality factor.

Keywords

Inductance Current conveyor Biquadratic filter 

Notes

Acknowledgments

The author would like to thank Chung Yuan Christian University for financial support on this work. Thanks are also due to anonymous reviewers and Associate Editor, which have enabled the author to revised the paper and enhance its quality.

References

  1. 1.
    Roberts, G. W., & Sedra, A. S. (1989). All current-mode frequency selective circuits. Electronics Letters, 25(12), 759–761. doi: 10.1049/el:19890513.CrossRefGoogle Scholar
  2. 2.
    Roberts, G. W., & Sedra, A. S. (1992). A general class of current amplifier-based biquadratic filter circuits. IEEE Transactions on Circuits and Systems I, 39(4), 257–263. doi: 10.1109/81.129453.MATHCrossRefGoogle Scholar
  3. 3.
    Svoboda, J. A., McGory, L., & Webb, S. (1991). Applications of a commercially available current conveyor. International Journal of Electronics, 70(1), 159–164. doi: 10.1080/00207219108921266.CrossRefGoogle Scholar
  4. 4.
    Pal, K. (1989). Modified current conveyors and their applications. Microelectronics Journal, 20(4), 37–40. doi: 10.1016/0026-2692(89)90076-1.CrossRefGoogle Scholar
  5. 5.
    Senani, R. (1980). New tunable synthetic floating inductors. Electronics Letters, 16(10), 382–383. doi: 10.1049/el:19800270.CrossRefGoogle Scholar
  6. 6.
    Pal, K. (1981). Novel floating inductance using current conveyors. Electronics Letters, 17(18), 638. doi: 10.1049/el:19810447.CrossRefGoogle Scholar
  7. 7.
    Singh, V. (1981). Active RC singlr-resistance-controlled lossless floating inductance simulation using single grounded capacitor. Electronics Letters, 17(24), 920–921. doi: 10.1049/el:19810641.CrossRefGoogle Scholar
  8. 8.
    Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18(10), 413–414. doi: 10.1049/el:19820283.CrossRefGoogle Scholar
  9. 9.
    Keskin, A. U., & Hancioglu, E. (2005). CDBA-based synthetic floating inductance circuits with electronic tuning properties. ETRI Journal, 27(2), 239–242.CrossRefGoogle Scholar
  10. 10.
    Yuce, E., & Cicekoglu, O. (2006). Novel floating inductance and FDNR simulations employing CCII+s. Journal of Circuits, Systems, and Computers, 15(1), 75–81. doi: 10.1142/S0218126606002964.CrossRefGoogle Scholar
  11. 11.
    Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291. doi: 10.1007/s10470-006-1624-7.CrossRefGoogle Scholar
  12. 12.
    Mohan, P. V. A. (1998). Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electronics Letters, 34(11), 1037–1038. doi: 10.1049/el:19980783.CrossRefGoogle Scholar
  13. 13.
    Bialko, M., & Newcomb, R. W. (1971). Generation of all finite linear circuits using the integrated DVCCs. IEEE Transactions on Circuit Theory, 18(6), 733–736. doi: 10.1109/TCT.1971.1083351.CrossRefGoogle Scholar
  14. 14.
    Senani, R. (1978). Realisation of single-resistance-controlled lossless floating inductance. Electronics Letters, 14(25), 828–829. doi: 10.1049/el:19780560.CrossRefGoogle Scholar
  15. 15.
    Patranabis, D., & Paul, A. N. (1979). Floating ideal inductor with one DVCCS. Electronics Letters, 15(18), 545–546. doi: 10.1049/el:19790392.CrossRefGoogle Scholar
  16. 16.
    Nandi, R. (1980). Lossless inductor simulation: Novel configurations using DVCCS. Electronics Letters, 16(17), 666–667. doi: 10.1049/el:19800472.CrossRefGoogle Scholar
  17. 17.
    Singh, V. K. (1981). Comment on lossless inductor simulation: Novel configurations using DVCCS. Electronics Letters, 17(15), 549–551. doi: 10.1049/el:19810384.CrossRefGoogle Scholar
  18. 18.
    Khan, I. A., Ahmed, M. T., & Parveen, T. (1988). Novel wide-range electronically tunable ideal grounded inductance. IEE Proceedings Part G, 135(3), 104–106.Google Scholar
  19. 19.
    Karybakas, C. A., Kosmatopoulos, C., & Laopoulos, T. (1992). Improved temperature compensation of OTAs. Electronics Letters, 28(8), 763–764. doi: 10.1049/el:19920482.CrossRefGoogle Scholar
  20. 20.
    Soliman, A. M. (1996). Applications of the current feedback amplifiers. Analog Integrated Circuits and Signal Processing, 11, 265–302. doi: 10.1007/BF00240490.CrossRefGoogle Scholar
  21. 21.
    Liu, S. I., & Tsao, H. W. (1991). New configurations for single CCII biquads. International Journal of Electronics, 70(3), 609–622. doi: 10.1080/00207219108921313.CrossRefGoogle Scholar
  22. 22.
    Soliman, A. M. (1998). A new filter configuration using current feedback op-amp. Microelectronics Journal, 29(7), 409–419. doi: 10.1016/S0026-2692(97)00025-6.CrossRefGoogle Scholar
  23. 23.
    Ibrahim, M. A., Minaei, S., & Kuntman, H. (2005). A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU International Journal of Electronics and Communications, 59(5), 311–318. doi: 10.1016/j.aeue.2004.11.027.CrossRefGoogle Scholar
  24. 24.
    Fabre, A. (1993). Insensitive voltage-mode and current-mode filters from commercially available transimpedance opamps. IEE Proceedings Part G, 140(5), 319–321.Google Scholar
  25. 25.
    Soliman, A. M. (1994). Kerwin-Huelsman-Newcomb circuit using current conveyors. Electronics Letters, 30(24), 2019–2020. doi: 10.1049/el:19941368.CrossRefGoogle Scholar
  26. 26.
    Chang, C. M., Hwang, C. S., & Tu, S. H. (1994). Voltage-mode notch, lowpass and bandpass filter using current-feedback amplifiers. Electronics Letters, 30(24), 2022–2023. doi: 10.1049/el:19941416.CrossRefGoogle Scholar
  27. 27.
    Senani, R. (1998). Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback Op-Amps. Frequenz, 52(9–10), 196–206.Google Scholar
  28. 28.
    Chang, C. M., & Lee, M. J. (1999). Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors. IEEE Transactions on Circuits and Systems. I, Fundamental Theory and Applications, 46(11), 1364–1365. doi: 10.1109/81.802827.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Singh, A. K., & Senani, R. (2002). A new four-CC-based configuration for realizing a voltage-mode biquad filter. Journal of Circuits, Systems, and Computers, 11(3), 213–218. doi: 10.1142/S0218126602000434.CrossRefGoogle Scholar
  30. 30.
    Horng, J. W., Chiu, W. Y., & Wei, H. Y. (2004). Voltage-mode highpass, bandpass and lowpass filters using two DDCCs. International Journal of Electronics, 91(8), 461–464. doi: 10.1080/00207210412331294603.CrossRefGoogle Scholar
  31. 31.
    Abuelma’atti, M. T., & Al-Zaher, H. A. (1998). New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integrated Circuits and Signal Processing, 16(3), 239–244. doi: 10.1023/A:1008266223999.CrossRefGoogle Scholar
  32. 32.
    Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., & Wei, H. Y. (2005). Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Computers & Electrical Engineering, 31(3), 190–202. doi: 10.1016/j.compeleceng.2005.03.002.MATHCrossRefGoogle Scholar
  33. 33.
    Horng, J. W., Hou, C. L., Chang, C. M., & Chung, W. Y. (2006). Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integrated Circuits and Signal Processing, 47(1), 73–83. doi: 10.1007/s10470-006-2224-2.CrossRefGoogle Scholar
  34. 34.
    Horng, J. W., Hou, C. L., Chang, C. M., Chou, H. P., & Lin, C. T. (2006). High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits, Systems and Signal Processing, 25(6), 767–777. doi: 10.1007/s00034-005-1227-z.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Bhusan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3(4), 148–149. doi: 10.1049/el:19670114.CrossRefGoogle Scholar
  36. 36.
    Sun, Y., & Fidler, J. K. (1997). Structure generation and design of multiple loop feedback OTA-grounded capacitor filters. IEEE Transactions on Circuits and Systems I, 44(1), 1–11.Google Scholar
  37. 37.
    Gupta, S. S., & Senani, R. (2003). Realisation of current-mode SRCOs using all grounded passive elements. Frequenz, 57(1–2), 26–37.Google Scholar
  38. 38.
    Elwan, H. O., & Soliman, A. M. (1997). Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings Part G, 144(3), 195–200.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electronic EngineeringChung Yuan Christian UniversityChung-LiTaiwan, ROC

Personalised recommendations