Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 61, Issue 3, pp 247–257 | Cite as

Current-controlled current differencing transconductance amplifier and applications in continuous-time signal processing circuits

Article

Abstract

This article presents the design for a basic current-mode building block for analogue signal processing, named as Current Controlled Current Differencing Transconductance Amplifier (CCCDTA). Its parasitic resistances at two current input ports can be controlled by an input bias current. As it can be applied in current-mode of all terminals, it is very suitable to use in a current-mode signal processing, which is continually more popular than a voltage one. The proposed element is realized in a bipolar technology and its performance is examined through PSPICE simulations. They display usability of the new active element, where the maximum bandwidth is 65 MHz. The CCCDTA performs low-power consumption and tuning over a wide current range. In addition, some examples as a current-mode universal biquad filter, a current-mode multiplier/divider and floating inductance simulator are included. They occupy only single CCCDTA.

Keywords

Current-controlled CDTA Biquad filter Multiplier Divider Inductance simulator 

Notes

Acknowledgments

This work is funded by Graduate College King Mongkut’s University of Technology North Bangkok. The authors would like to thank the anonymous reviewers for their helpful comments.

References

  1. 1.
    Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus.Google Scholar
  2. 2.
    Bhaskar, D. R., Sharma, V. K., Monis, M., & Rizvi, S. M. I. (1999). New current-mode universal biquad filter. Microelectronics Journal, 30(9), 837–839.CrossRefGoogle Scholar
  3. 3.
    Pennisi, S. (2002). A low-voltage design approach for class AB current-mode circuits. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 49, 4 ed., pp. 273–279.Google Scholar
  4. 4.
    Palmisano, G., & Pennisi, S. (2000). Dynamic biasing for true low-voltage CMOS class AB current-mode circuits. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 47, 12 ed., pp. 1569–1575.Google Scholar
  5. 5.
    Ramirez-Angulo, J., Ducoudray-Acevedo, G., Carvajal, R. G., & Lopez-Martin, A. (2005). Low-voltage high-performance voltage-mode and current-mode WTA circuits based on flipped voltage followers. In IEEE transactions on circuits and systems II: Analog and digital signal processing, Vol. 52, 7 ed., pp. 420–423.Google Scholar
  6. 6.
    Tu, S.-H., Chang, C.-M., Ross, J. N., & Swamy, M. N. S. (2007). Analytical synthesis of current-mode high-order single-ended-input OTA and equal-capacitor elliptic filter structures with the minimum number of components. In IEEE Transactions on circuits and systems I: Fundamental theory and applications, Vol. 54, 10 ed., pp. 2195–2210.Google Scholar
  7. 7.
    Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. In IEEE Transactions on circuits and systems I: Fundamental theory and applications, Vol. 53, 7 ed., pp. 1448–1457.Google Scholar
  8. 8.
    Abuelma’atti, M. T., & Al-Zaher, H. A. (1999). Current-mode sinusoidal oscillators using single FTFN. In IEEE trans. circuits and systems-II: Analog and digital signal processing, Vol. 46, pp. 69–74.Google Scholar
  9. 9.
    Yuce, E. (2008). Design of a simple current-mode multiplier topology using a single CCCII+. In IEEE transactions on instrumentation and measurement, Vol. 57, 3 ed., pp. 631–637.Google Scholar
  10. 10.
    Khan, A., Abouel-ela, M., & Al-turaigi, M. A. (1995). Current-mode precision rectification. International Journal of Electronics, 79, 853–859.CrossRefGoogle Scholar
  11. 11.
    Dejhan, K., & Netbut, C. (2007). New simple square-rooting circuits based on translinear current conveyors. International Journal of Electronics, 94, 707–723.CrossRefGoogle Scholar
  12. 12.
    DiClemente, D., & Yuan, F. (2007). Current-mode phase-locked loops- a new architecture. In IEEE transactions on circuits and systems II: Express briefs, analog and digital signal processing, Vol. 54, 4 ed., pp. 303–307.Google Scholar
  13. 13.
    Biolek, D. (2003). CDTA: Building block for current-mode analog signal processing. In Proceedings of the European conference on circuit theory and design 2003—ECCTD’03 (pp. 397–400), Krakow, Poland.Google Scholar
  14. 14.
    Biolek, D., & Biolkova, V. (2003). Universal biquads using CDTA elements for cascade filter design. In Proceedings of 13th international multiconference CSCC2003 (pp. 8–12), Corfu, Greece.Google Scholar
  15. 15.
    Acar, C., & Özoguz, S. (1999). A versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectronics Journal, 30(2), 157–160.CrossRefGoogle Scholar
  16. 16.
    Keskin, A. Ü., Dalibor, B., Hancioglu, E., & Biolková, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. AEU: International Journal of Electronics and Communications, 60(6), 443–446.CrossRefGoogle Scholar
  17. 17.
    Fabre, A. (1983). “Dual translinear voltage/current convertor”, Electron. Letters. vol, 19, 1030–1031.Google Scholar
  18. 18.
    Grebene, A. (1984). Bipolar and MOS analog integrated circuit design. New York: John Wiley.Google Scholar
  19. 19.
    Frey, D. R. (1993). Log-domain filtering: an approach to current-mode filtering. IEE Proceedings Circuits, Devices and Systems, 140(6), 406–416.CrossRefGoogle Scholar
  20. 20.
    Ibrahim, M. A., Minaei, S., & Kuntman, H. A. (2005). A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU: International Journal of Electronics and Communications, 59(5), 311–318.CrossRefGoogle Scholar
  21. 21.
    Hou, C. L., Huang, C. C., Lan, Y. S., Shaw, J. J., & Chang, C. M. (1999). Current-mode and voltage-mode universal biquads using a single current-feedback amplifier. International Journal of Electronics, 86(8), 929–932.CrossRefGoogle Scholar
  22. 22.
    Kaewdang, K., Fongsamut, C., & Surakampontorn, W. (2003). A wide-band current-mode OTA-based analog multiplier-divider. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’03) (pp. I349–I352), Bangkok, Thailand.Google Scholar
  23. 23.
    Wilamowski, B. M. (1998). VLSI analog multiplier/divider circuit. In Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 493–496.Google Scholar
  24. 24.
    Pena-Finol, J. S., & Connelly, J. A. (2001). Novel lossless floating immittance simulator employing only two FTFNs. Analog Integrated Circuits and Signal Processing, 29(3), 233–235.CrossRefGoogle Scholar
  25. 25.
    Khan, I. A., & Zaidi, M. H. (2003). A novel ideal floating inductor using translinear conveyors. Active and Passive Electronic Components, 26(2), 87–89.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Kuntmana, H., Gulsoyb, M., & Cicekoglub, O. (2000). Actively simulated grounded lossy inductors using third generation current conveyors. Microelectronics Journal, 31(4), 245–250.CrossRefGoogle Scholar
  27. 27.
    Pal, K. (2004). Floating inductance and FDNR using positive polarity current conveyors. Active and Passive Electronic Components, 27(2), 81–83.CrossRefGoogle Scholar
  28. 28.
    Yuce, E., Minaei, S., & Cicekoglu, O. (2005). A novel grounded inductor realization using a minimum number of active and passive components. ETRI Journal, 27(4), 427–432.CrossRefGoogle Scholar
  29. 29.
    Çam, U., Kaçar, F., Cicekoglu, O., Kuntman, H., & Kuntman, A. (2003). Novel grounded parallel immittance simulator topologies employing single OTRA. AEU: International Journal of Electronics and Communications, 57(4), 287–290.CrossRefGoogle Scholar
  30. 30.
    Minaei, M., Yuce, E., & Cicekoglu, O. (2006). Lossless active floating inductance simulator. In Proceedings of DELTA’06 (pp. 332–335), Malaysia.Google Scholar
  31. 31.
    Gulsoy, M., & Çcekolu, O. (2005). Lossless and lossy synthetic inductors employing single current differencing buffered amplifier. In IEICE Transactions on communications, Vol. E88-B, 5 ed., pp. 2152–2155.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Teacher Training in Electrical Engineering, Faculty of Technical EducationKing Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations