CMOS-based near zero-offset multiple inputs max–min circuits and its applications

  • Pipat Prommee
  • Krit Angkeaw
  • Montri Somdunyakanok
  • Kobchai Dejhan


CMOS-based near zero-offset multiple inputs maximum circuit and minimum circuits are proposed. The analog signal building blocks including shunt-feedback buffer, voltage-subtraction circuits and current mirrors are deployed for obtained the good performances. This achieved circuit is a simply scheme and able to work with low-power supplies. The input range is obtained around ±600 mV within ±1.5 V power supplies. Near zero-offset and low-output impedance are provided by proposed circuit. The delay of output is less than 5 ns for THD less than 1% and frequency response up to 500 MHz. Half-wave, full-wave rectifiers and 4 bits linear combination Digital-to-Analog Converter (DAC) are raised up to confirm the realistic applications. All performances including the DC-characteristic, frequency response, high-frequency wave output are simulated by PSpice.


Maximum circuit Minimum circuit Rectifier DAC 



The authors would like to thank our colleague Natapong Wongprommoon for his contribution to write this paper and anonymous reviewers who gave us comments and suggestions.


  1. 1.
    Liu, S. I., Hwang, Y. S., & Tsay, J. H. (1993). CCII-based fuzzy membership function and max/min circuit. Electronics Letters, 29(1), 116–118. doi: 10.1049/el:19930076.CrossRefGoogle Scholar
  2. 2.
    Inoue, T., Motomura, T., Matsuo, R., & Ueno, F. (1991). New OTA-based analog circuits for fuzzy membership functions and max/min operations. IEICE Transactions E , 74(11), 3619–3621.Google Scholar
  3. 3.
    Inoue, T., Ueno, F., Motomura, T., Setoguchi, O., & Matsuo, R. (1991). New high-speed analogue max and min circuits using OTA-based bounded difference operations. Electronics Letters, 27(12), 1034–1035. doi: 10.1049/el:19910643.CrossRefGoogle Scholar
  4. 4.
    Opris, I. E. (1998). Rail-to-Rail Multiple-input min/max circuit. IEEE Transactions on Circuits and Systems II, 45, 137–140. doi: 10.1109/82.659465.CrossRefGoogle Scholar
  5. 5.
    Carvajal, R. G., Martinez-Heredia, J., & Ramirez-Angulo, J. (2000). High-speed high-precision min/max circuits in CMOS technology. Electronics Letters, 36(8), 697–699. doi: 10.1049/el:20000542.CrossRefGoogle Scholar
  6. 6.
    Wang, Z. (1990). 2-MOSFET transistors with extremely low distortion for output reaching supply voltage. Electronics Letters, 26, 951–952. doi: 10.1049/el:19900620.CrossRefGoogle Scholar
  7. 7.
    Viswanathan, T. R. (1986). CMOS transconductance element. Proceedings of the IEEE, 74, 222–224. doi: 10.1109/PROC.1986.13439.CrossRefGoogle Scholar
  8. 8.
    Karadimas, D. S., Mavridis, D. N., & Efstathiou, K. A. (2006, May). A digitally calibrated R-2R ladder architecture for high performance Digital-to-Analog Converters. Proceedings of ISCAS2006 (pp. 4779–4782).Google Scholar
  9. 9.
    Kennedy, M. P. (2000). On the robustness of R-2R ladder DAC’s. IEEE Transactions on Circuits and Systems II, 47, 109–116. doi: 10.1109/81.828565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pipat Prommee
    • 1
  • Krit Angkeaw
    • 1
  • Montri Somdunyakanok
    • 2
  • Kobchai Dejhan
    • 1
  1. 1.Department of Telecommunications Engineering, Faculty of EngineeringKing’s Mongkut Institute of Technology LadkrabangBangkokThailand
  2. 2.Electrical Engineering Department, Faculty of EngineeringSiam UniversityBangkokThailand

Personalised recommendations