Analog Integrated Circuits and Signal Processing

, Volume 58, Issue 2, pp 91–104 | Cite as

An implanted system for multi-site nerve cuff-based ENG recording using velocity selectivity

  • Christopher T. Clarke
  • Xianhong Xu
  • Robert Rieger
  • John Taylor
  • Nick Donaldson


This paper describes the design of an implantable system for velocity-selective electroneurogram (ENG) recording. The system, which relies on the availability of multielectrode nerve cuffs (MECs) consists of two CMOS ASICs. One ASIC called the electrode unit (EU) is a mixed analogue/digital signal acquisition system which is mounted directly on an MEC in order to optimize the interface between the two. It is linked to the other ASIC by means of a 5-core cable through which it receives power and commands in addition to transmitting data. The second ASIC, called the monitoring unit (MU) manages the interface between the EUs (each MU can control up to three EUs) and an RF transcutaneous link to the external signal processor. The ASICs are fabricated in 0.8 μm CMOS technology. The EUs measure 3 mm × 4 mm each and consume 105 mW (35 mW each), while the MU measures 1.5 mm × 2 mm and consumes 4 mW. The power consumption on the communication channels (including cable losses) between the MU and EUs is 129 mW. A digital communication strategy between the two parts of the implanted system and the external controller is described.


Implantable Electroneurogram Integrated circuit Medical Distributed system 


  1. 1.
    Brindley, G. S. & Rushton, D. N. (eds.). (1995). Clinical neurology: Neuroprostheses (vol. 14, no. 1). London: Baillieres-Tindall.Google Scholar
  2. 2.
    Schmidt, R. A., Bruschini, H., & Tanagho, E. A. (1978). Feasibility of inducing micturition through chronic stimulation of sacral roots. Urology, 12, 471–477.CrossRefGoogle Scholar
  3. 3.
    Haugland, M. K., & Hoffer, J. A. (1994). Artifact-free sensory nerve signals obtained from cuff electrodes during functional electrical stimulation of nearby muscles. IEEE Transactions on Rehabilitation Engineering, 2, 37–40.CrossRefGoogle Scholar
  4. 4.
    Haugland, M. K., & Hoffer, J. A. (1994). Slip information obtained from the cutaneous electroneurogram: Application in closed loop control of functional electrical stimulation. IEEE Transactions on Rehabilitation Engineering, 2, 29–36.CrossRefGoogle Scholar
  5. 5.
    Haugland, M. K., Hoffer, J. A., & Sinkjaer, T. (1994). Skin contact force information in sensory nerve signals recorded by implanted cuff electrodes. IEEE Transactions on Rehabilitation Engineering, 2, 18–28.CrossRefGoogle Scholar
  6. 6.
    Haugland, M., Lickel, A., Haase, J., & Sinkjaer, T. (1999). Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man. IEEE Transactions on Rehabilitation Engineering, 7(2), 215–227CrossRefGoogle Scholar
  7. 7.
    Strange, K. D., & Hoffer, J. A. (1999). Gait phase information provided by sensory nerve activity during walking: Applicability as a state controller feedback for FES. IEEE Transactions on Biomedical Engineering, 46(7), 797–810.CrossRefGoogle Scholar
  8. 8.
    Waters, R. L., McNeal, D. R., Faloon, W., & Clifford, B. (1985). Functional electrical stimulation of the peroneal nerve for hemiplegia: Long term clinical follow-up. The Journal of Bone and Joint Surgery, 67A, 792–793.Google Scholar
  9. 9.
    Haugland, M. K., & Sinkjaer, T. (1995). Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man. IEEE Transactions on Rehabilitation Engineering, 3, 307–317.CrossRefGoogle Scholar
  10. 10.
    Steyaert, M., Sansen, W., & Zhongyuan, C. (1987). A Micropower Low-Noise Monolithic Instrumentation Amplifier for Medical Purposes. IEEE Journal of Solid-State Circuits, SC-22(6), 1163–1168.CrossRefGoogle Scholar
  11. 11.
    Martins, R., Selberherr, S., & Vaz, F. A. (1998). A CMOS IC for portable EEG acquisition systems. IEEE Transactions on Instrumentation and Measurement, 47(5), 1191–1196.CrossRefGoogle Scholar
  12. 12.
    Ji, J., & Wise, K. D. (1992). An implantable CMOS circuit interface for multiplexed microelectrode recording arrays. IEEE Journal of Solid-State Circuits, 27(3), 433–443.CrossRefGoogle Scholar
  13. 13.
    Perelman, Y., & Ginosar, R. (2006). An integrated system for multichannel neuronal recording with spike/LFP separation and digital output. Proceedings of the 2nd International IEEE IEMBS Conference on Neural Engineering. Arlington, Virginia.Google Scholar
  14. 14.
    Rieger, R., Taylor, J., Demosthenous, A., Donaldson, N., & Langlois, P. (2003). Design of a Low-Noise Preamplifier for Nerve Cuff Electrode Recording. IEEE Journal of Solid-State Circuits, 38(8), 1373–1379.CrossRefGoogle Scholar
  15. 15.
    Pflaum, C., Riso, R. R., & Wiesspeiner, G. (1996). Performance of alternative amplifier configurations for tripolar nerve cuff recorded ENG. Proceedings of the IEEE International Conference Engineering and Medcine and Biology Society (EMBS) (vol. 1, pp. 375–376). Amsterdam, Netherlands.Google Scholar
  16. 16.
    Rushton, W. A. H. (1951). A theory of the effects of fibre size in medullated nerves. Journal of Physiology, 115, 101–122.Google Scholar
  17. 17.
    Taylor, J., Donaldson, N., & Winter, J. (2004). Multiple-electrode nerve cuffs for low velocity and velocity-selective neural recording. Medical and Biological Engineering and Computing, 42, 634–643.CrossRefGoogle Scholar
  18. 18.
    Stieglitz, T., Beutel, H., Schuettler, M., & Meyer, J. U. (2000). Micromachined Polyimide-Based Devices for Flexible Neural Interfaces. Biomedical Microdevices, 2(4), 283–294.CrossRefGoogle Scholar
  19. 19.
    Donaldson, P. (1983). The Cooper cable: an implantable multiconductor cable for neurological prostheses. Medical and Biological Engineering and Computing, 21, 371–374.CrossRefGoogle Scholar
  20. 20.
    ISO standard, ‘Information technology-Open Systems Interconnection-basic reference model: the basic model’, ISO/IEC 7498–1, 1994.Google Scholar
  21. 21.
    Jones, A., Uzam, M., & Ajlouni, N. (1996). Design of discrete event control systems for programmable logic controllers using T-Timed Petri Nets. Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design (pp. 212–217). 15–18 September, Dearborn, MI, USA.Google Scholar
  22. 22.
    Rieger, R., et al. (2006). Very low-noise ENG amplifier system using CMOS technology. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(4), 427–437.CrossRefGoogle Scholar
  23. 23.
    Rieger, R., Pal, D., Taylor, J., Clarke, C., Langlois, P., & Donaldson, N. (2005). 10-Channel very low-noise ENG amplifier system using CMOS technology. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2005) (pp 748–751). May, Kobe, Japan.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christopher T. Clarke
    • 1
  • Xianhong Xu
    • 1
  • Robert Rieger
    • 2
  • John Taylor
    • 1
  • Nick Donaldson
    • 3
  1. 1.Department of Electronic and Electrical EngineeringUniversity of BathBathUK
  2. 2.Electrical Engineering DepartmentNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC
  3. 3.Department of Medical Physics and BioengineeringUniversity College LondonLondonUK

Personalised recommendations