Advertisement

A translinear SiGe BiCMOS current-controlled oscillator with 80 Hz–800 MHz tuning range

  • Dimitrios N. LoizosEmail author
  • Paul P. Sotiriadis
  • Gert Cauwenberghs
Article

Abstract

A 3-phase current controlled sinusoidal oscillator, tunable over a wide range of frequencies is presented. The oscillator comprises a ring of 3 cascaded differential G m  − C low-pass filter stages, implemented in a fully translinear, NPN-only circuit. Closed-form analytical expressions are derived to quantify both frequency and amplitude tuning, as a function of two current biases. Experimental results from a 0.5 μm SiGe BiCMOS chip demonstrate 7 decades of tuning range, from 80 Hz to 800 MHz, as well as low harmonic distortion. Power consumption scales with oscillation frequency, measuring 2 μW/MHz The circuit serves a range of applications including agile communications, analog built-in self-test, stochastic adaptive control, spectroscopy, and bioinstrumentation.

Keywords

Current-controlled oscillator Translinear circuits Amplitude and frequency control SiGe BiCMOS RF circuits 

References

  1. 1.
    Rohde, U. L., & Poddar, A. K. (2005). Configurable adaptive ultra low noise wideband VCOs. In Int. Conf. Ultra-Wideband (ICU 2005), pp. 452–457.Google Scholar
  2. 2.
    Herzel, F., Erzgraber, H., & Ilkov, N. (2000). A new approach to fully integrated CMOS LC-oscillators with a very large tuning range. In Proc. Cust. Integr. Circuits Conf. (CICC 2000), pp. 573–576.Google Scholar
  3. 3.
    Ewen, J. F., et al. (1995). CMOS circuits for Gb/s serial data communication. IBM Journal of Research and Development, 39, 73–81.CrossRefGoogle Scholar
  4. 4.
    Banu, M. (1988). MOS oscillators with multi-decade tuning range and gigahertz maximum speed. IEEE Journal of Solid-State Circuits, 23, 1386–1393.CrossRefGoogle Scholar
  5. 5.
    Verhoeven, C. J. M. (1992). A high-frequency electronically tunable quadrature oscillator. IEEE Journal of Solid-State Circuits, 27, 1097–1100.CrossRefGoogle Scholar
  6. 6.
    Retdian, N., Takagi, S., & Fujii, N. (2002). Voltage controlled ring oscillator with wide tuning range and fast voltage swing. In Proc. Asia-Pacific Conf. ASIC 2002, pp. 201–204.Google Scholar
  7. 7.
    Zhao, X., Chebli, R., & Sawan, M. (2004). A wide tuning range voltage-controlled ring oscillator dedicated to ultrasound transmitter. In Proc. Int. Conf. Microelectr. (ICM 2004), pp. 313–316.Google Scholar
  8. 8.
    Serrano-Gotarredona, T., Linares-Barranco, B., & Andreou, A. G. (1999). Very wide range tunable CMOS/bipolar current mirrors with voltage clamped input. IEEE Transactions on Circuits and Systems I , 46, 1398–1407.CrossRefGoogle Scholar
  9. 9.
    Serrano-Gotarredona, T., & Linares-Barranco, B. (1998). 7-decade tuning range CMOS OTA-C sinusoidal VCO. Electronics Letters, 34, 1621–1622.CrossRefGoogle Scholar
  10. 10.
    Gilbert, B. (1996). Current controlled quadrature oscillator based on differential G M/C cells. U.S. Patent 5,489,878.Google Scholar
  11. 11.
    Gilbert, B. (1999). Quadrature oscillator using inherent nonlinearities of impedance cells to limit amplitude. U.S. Patent 6,008,701.Google Scholar
  12. 12.
    Doorenbosch, F. (1976). An integrated wide-tunable sine oscillator. IEEE Journal of Solid-State Circuits, 11, 401–403.CrossRefGoogle Scholar
  13. 13.
    Pookaiyaudom, S., & Mahattanakul, J. (1995). A 3.3 volt high-frequency capacitorless electronically-tunable log-domain oscillator. In Proc. Int. Symp. Circuits and Systems (ISCAS ’95), pp. 829–832.Google Scholar
  14. 14.
    Srisuchinwong, B. (2000). Fully balanced current-tunable sinusoidal quadrature oscillator. International Journal of Electronics, 87, 547–556.CrossRefGoogle Scholar
  15. 15.
    Kiranon, W., Kesorn, J., & Wardkein, P. (1996). Current controlled oscillator based on translinear conveyors. Electronics Letters, 32, 1330–1331.CrossRefGoogle Scholar
  16. 16.
    Martinez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transactions on Circuits and Systems I, 46, 1386–1390.CrossRefGoogle Scholar
  17. 17.
    Serdijn, W. A., Mulder, J., van der Woerd, A. C., & van Roermund, A. H. M. (1998). A wide-tunable translinear second-order oscillator. IEEE Journal of Solid-State Circuits, 33, 195–201.CrossRefGoogle Scholar
  18. 18.
    Berny, A. D., Niknejad, A. M., & Meyer, R. G. (2004). A 1.8 GHz LC VCO with 1.3 GHz tuning range and mixed-signal amplitude calibration. In Symp. VLSI Circuits 2004, pp. 54–57.Google Scholar
  19. 19.
    Fong, N. H. W., et al. (2003). Design of wide-band CMOS VCO for multiband wireless LAN applications. IEEE Journal of Solid-State Circuits, 38, 1333–1342.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Mukhopadhyay, R., et al. (2005). Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end. IEEE Journal of Solid-State Circuits, 53, 81–93.Google Scholar
  21. 21.
    Milor, L. S. (1998). A tutorial introduction to research on analog and mixed-signal circuit testing. IEEE Transactions on Circuits and Systems II, 45, 1389–1407.CrossRefGoogle Scholar
  22. 22.
    Roberts, G. W. (1997). Improving the testability of mixed-signal integrated circuits. In Proc. Cust. Integr. Circuits Conf. (CICC 1997), pp. 214–221.Google Scholar
  23. 23.
    Dufort, B., & Roberts, G. W. (1999). On-chip analog signal generation for mixed-signal built-in self-test. IEEE Journal of Solid-State Circuits, 34, 318–330.CrossRefGoogle Scholar
  24. 24.
    O’Meara, T. R. (1977). The multidither principle in adaptive optics. Journal of the Optical Society of America, 67, 306–315.CrossRefGoogle Scholar
  25. 25.
    Vorontsov, M. A., Carhart, G. W., & Ricklin, J. C. (1997). Adaptive phase-distortion correction based on parallel gradient-descent optimization. Optics Letters, 22, 907–909.CrossRefGoogle Scholar
  26. 26.
    Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2006). A robust continuous-time multi-dithering technique for laser communications using adaptive optics. In Proc. Int. Symp. Circuits and Systems (ISCAS ’06), pp. 3626–3629.Google Scholar
  27. 27.
    Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2007). Multi-channel coherent detection for delay-insensitive model-free adaptive control. In Proc. Int. Symp. Circuits Syst, pp. 1775–1778.Google Scholar
  28. 28.
    Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2007). High-speed, model-free adaptive control using parallel synchronous detection. In Proc. 20th SBCCI Symposium on Integrated Circuits and Systems Design.Google Scholar
  29. 29.
    Hölzel, R. (1993). A simple wide-band sine wave quadrature oscillator. IEEE Transactions on Instrumentation and Measurement, 42, 758–760.CrossRefGoogle Scholar
  30. 30.
    Huang, Y., Hölzel, R., Pethig, R., & Wang, X. B. (1992). Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in Medicine and Biology, 37, 1499–1517.CrossRefGoogle Scholar
  31. 31.
    Lord, J. S., & Riedi, P. C. (1995). A swept frequency pulsed magnetic resonance spectrometer with particular application to NMR of ferromagnetic materials. Measurement Science & Technology, 6, 149–155.CrossRefGoogle Scholar
  32. 32.
    Gilbert, B. (1998). The multi-tanh principle: A tutorial overview. IEEE Journal of Solid-State Circuits, 33, 2–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dimitrios N. Loizos
    • 1
    • 2
    Email author
  • Paul P. Sotiriadis
    • 2
  • Gert Cauwenberghs
    • 1
  1. 1.Division of Biological SciencesUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations