A digitally controlled 2.4-GHz oscillator in 65-nm CMOS

  • Liangge Xu
  • Saska Lindfors
  • Kari Stadius
  • Jussi Ryynänen
Article

Abstract

This article presents a 2.4-GHz digitally controlled oscillator (DCO) for the ISM band. The circuit is designed using a 65-nm CMOS technology with an operating voltage of 1.2 V. The DCO comprises an LC oscillator core and the digital interface logic. The measured total frequency range is from 2.26 to 3.04 GHz. Its frequency quantization step is approximately 20 kHz, and using a digital ΣΔ-modulator (SDM), its effective frequency resolution is better than 1 kHz. Current consumption of the oscillator core is tunable through a 6-bit digital word. The measured phase noise is −122 dBc/Hz at 1-MHz offset frequency with 4.8-mA current consumption.

Keywords

DCO LC oscillator Digital control Sigma–delta modulator SDM LSB dithering Capacitance dithering Varactor bank CMOS 

References

  1. 1.
    Staszewski, R. B., Hung, C.-M., & Leipold, D., et al. (2003). A first multigigahertz digitally controlled oscillator for wireless applications. IEEE Transactions on Microwave Theory and Techniques, 51(11), 2154–2164.CrossRefGoogle Scholar
  2. 2.
    Staszewski, R. B., Wallberg, J., & Hung, C.-M., et al. (2006). LMS-based calibration of an RF digital controlled oscillator for mobile phones. IEEE Transactions on Circuits Systems II: Express Briefs, 53(3), 225–229.CrossRefGoogle Scholar
  3. 3.
    Staszewski, R. B., Muhammad, K., & Leipold, D., et al. (2004). All-digital tx frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 39(12), 2278–2291.CrossRefGoogle Scholar
  4. 4.
    Muhammad, K., Ho, Y.-C., & Mayhugh T. L., et al. (2006). The first fully integrated quad-band GSM/GPRS receiver in a 90-nm digital CMOS process. IEEE Journal of Solid-State Circuits, 41(8), 1772–1783.CrossRefGoogle Scholar
  5. 5.
    Dalt, N. D., Knopf, C., & Burian, M., et al. (2006). A 10-b 10 GHz digitally controlled LC oscillator in 65 nm CMOS. IEEE International Solid-State Circuit Conference. Digest of Technical Papers, 669–678.Google Scholar
  6. 6.
    Kenneth, K. O. (1998). Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies. IEEE Journal of Solid-State Circuits, 33(8), 1249–1252.CrossRefGoogle Scholar
  7. 7.
    Staszewski, R. B., Hung, C.-M., & Barton, N., et al. (2005). A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones. IEEE Journal of Solid-State Circuits, 40(11), 2203–2211.CrossRefGoogle Scholar
  8. 8.
    Hajimiri, A., & Lee, T. H. (1999). Design issue in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34(5), 714–724.CrossRefGoogle Scholar
  9. 9.
    Radke, R. E., Eshraghi, A., & Fiez, T. S. (2000). A 14-bit current-mode ΣΔ DAC based upon rotated data weighted averaging. IEEE Journal of Solid-State Circuits, 35(8), 1074–1084.CrossRefGoogle Scholar
  10. 10.
    Pamarti, S., & Galton, I. (2007). LSB dithering in MASH delta sigma D/A converters. IEEE Transactions on Circuits Systems I: Regular Papers, 54(3), 492–503.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Staszewski, R. B., Fernando, C., & Balsara, P. (2005). Event-driven simulation and modeling of phase noise of an RF oscillator. IEEE Transactions on Circuits Systems I: Regular Papers, 52(4), 723–733.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liangge Xu
    • 1
  • Saska Lindfors
    • 1
  • Kari Stadius
    • 1
  • Jussi Ryynänen
    • 1
  1. 1.Department of Micro- and NanotechnologyHelsinki University of Technology/SMARAD2HelsinkiFinland

Personalised recommendations