Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits

  • Hesham F. A. Hamed
  • Savas Kaya
  • Janusz A. Starzyk
Article

Abstract

Use of independently-driven nano-scale double gate (DG) MOSFETs for low-power analog circuits is emphasized and illustrated. In independent drive configuration, the top gate response of DG-MOSFETs can be altered by application of a control voltage on the bottom gate. We show that this could be a powerful method to conveniently tune the response of conventional CMOS analog circuits especially for current-mode design. Several examples of such circuits, including current mirrors, a differential current amplifier and differential integrators are illustrated and their performance gauged using TCAD simulations. The topologies and biasing schemes explored here show how the nano-scale DG-MOSFETs may pave way for efficient, mismatch-tolerant and smaller circuits with tunable characteristics.

Keywords

Integrated circuits Tunable analog circuits Current mode circuits Mixed-mode simulations DG-MOSFET 

References

  1. 1.
    Kaya, S., Hamed, H. F. A., & Starzyk, J. (2007). Low-power tunable analog circuit blocks based on nanoscale double-gate MOSFETs. IEEE Transactions on Circuits & Systems II, 54(7), 571–575.CrossRefGoogle Scholar
  2. 2.
    De Lima, J. A. (2004). A low-voltage wide-swing programmable-gain current amplifie. Analog Integrated Circuits and Signal Processing, 41, 147–157.Google Scholar
  3. 3.
    SIA Roadmap, http://public.itrs.net, 2005 update.
  4. 4.
    Yu, B., Wang, H., Joshi, A., Xiang, Q., Ibok, E., & Lin, M.-R. (2001). 15 nm gate length planar CMOS transistor. In IEDM Tech. Dig., p. 937.Google Scholar
  5. 5.
    Philip Wong, H.-S. (2001). Beyond the conventional MOSFET. In Proceedings of the 31st European Solid-State Device Research Conference, p. 69.Google Scholar
  6. 6.
    Kaya, S., & Ma, W. (2004). Optimization of RF linearity in DG-MOSFETs. IEEE Electron Devices Letters, 25, 308–310.CrossRefGoogle Scholar
  7. 7.
    Pei, G., & Kan, E.C.-C. (2004). Independently driven DG MOSFETs for mixed-signal circuits: Part I-quasi-static and nonquasi-static channel coupling. IEEE Transactions on Electron Devices, 51, 2086.Google Scholar
  8. 8.
    Reddy, M. V. R., Sharma, D. K., Patil, M. B., & Rao, V. R. (2005). Power-area evaluation of various double-gate RF mixer topologies. IEEE Electron Devices Letters, 26, 664.CrossRefGoogle Scholar
  9. 9.
    Mathew, L., Du, Y., Thean, A. V., Sadd, M., Vandooren, A., Parker, C., Stephens, T., Mora, R., Rai, R., Zavala, M., Sing, D., Kalpat, S., Hughes, J., Shimer, J. G., Jallepalli, R., Workman, S., Zhang, G., Fossum, W., White, B. E., Nguyen, B. Y., & Mogab, J. (2004). CMOS Vertical Multiple Independent Gate Field Effect Transistor (MIGFET). In Proceedings of IEEE SOI Conference, p. 187.Google Scholar
  10. 10.
    Varadharajan, S., & Kaya, S. (2005). Study of dual-gate SOI MOSFETs as RF mixers. International Semiconductor Device Research Symposium, p. 7.Google Scholar
  11. 11.
    Lin, C.-H., Su, P., Taur, Y., Xi, X., He, J., Niknejad, A. M., Chan, M., & Hu, C. (2003). Circuit performance of double-gate SOI CMOS. International Semiconductor Device Research Symposium (ISDRS), p. 266.Google Scholar
  12. 12.
    Masahara, M., Surdeanu, R., Witters, L., Doornbos, G., Nguyen, V. H., Van den bosch, G., Vrancken, C., Devriendt, K., Neuilly, F., Kunnen, E., Jurczak, M., & Biesemans, S. (2006). Demonstration of asymmetric gate oxide thickness 4-terminal FinFETs. IEEE International SOI Conference, pp. 165–166.Google Scholar
  13. 13.
    ISE TCAD Suite, http://www.synopsis.com.
  14. 14.
    Kumar, A., & Tiwari, S. (2004). A power-performance adaptive low voltage analog circuit design using independently contolled double gate CMOS technology. In Proceedings of IEEE International Symp. Circuits Syst, pp. I197–200.Google Scholar
  15. 15.
    Smith, S. L., & Sánchez-Sinencio, E. (1996). Low voltage integrators for high-frequency CMOS filters using current mode techniques. IEEE Transactions on Circuits and Systems-II, 43(1), 39–48.CrossRefGoogle Scholar
  16. 16.
    Quan, X., Embabi, S. H. K., & Sánchez-Sinencio, E. (1998). Improved fully-balanced current-mode integrator. IEE Electronics Letters, 34(1), 1–2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hesham F. A. Hamed
    • 1
  • Savas Kaya
    • 1
  • Janusz A. Starzyk
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceOhio UniversityAthensUSA

Personalised recommendations