Asynchronous Sigma-Delta analog-to digital converter based on the charge pump integrator
- 388 Downloads
- 21 Citations
Abstract
The concept of the asynchronous Sigma-Delta analog-to-digital converter (ASD-ADC) based on the charge pump integrator is discussed in the paper. A two-level conversion scheme is utilized. The first level is accomplished by amplitude-to-pulse-width mapping in the asynchronous Sigma-Delta modulator. The other level consists in the time-to-digital conversion. The ASD-ADC belongs to a class of mean value converters since the digital outputs correspond to the mean values of the input signal in time windows of varying width. The configurations of the charge pump modulator either with bipolar, or with unipolar controlled current sources are presented. The design of the charge-pump-based modulator model using classical solutions of bipolar technology is exemplified. The input/output simulation results of the designed asynchronous Sigma-Delta modulator (ASDM) are reported. Next, the design of the time-to-digital converter, the analysis of the quantization error, and two concepts of the converter digital output interface are presented. The comparison of the minimum transmission bit rate of the serial output port(s) for both concepts is carried out. Finally, the procedure of evaluation of the ASD-ADC key design parameters for speech signal supporting a possible original input signal recovery is exemplified.
Keywords
Asynchronous circuits Asynchronous Sigma-Delta modulation Time-to-digital conversion Time quantization Charge pumpReferences
- 1.Miśkowicz, M. (2006). Efficiency of level-crossing sampling for bandlimited Gaussian random processes. In Proceedings of IEEE International Workshop on Factory Communication Systems WFCS 2006 (pp. 137–142).Google Scholar
- 2.Allier, E., Sicard, G., Fesquet, L., & Renaudin, M. (2003). A new class of asynchronous A/D converters based on time quantization. In Proceedings of IEEE International Symposium on Asynchronous Circuits and Systems ASYNC 2003 (pp. 196–205).Google Scholar
- 3.Allier, E., Goulier, J., Sicard, G., Dezzani, A., André, E., Renaudin, M. (2005). A 120 nm low power asynchronous ADC. In Proceedings of International Symposium on Low Power Electronics and Design ISLPED 2005 (pp. 60–65).Google Scholar
- 4.Akopyan, F., Manohar, R., Apsel, A. B. (2006). A level-crossing flash asynchronous analog-to-digital converter. In Proceedings of IEEE International Symposium on Asynchronous Circuits and Systems ASYNC 2006 (pp. 12–22).Google Scholar
- 5.Aeschlimann, F., Allier, E., Fesquet, L., Renaudin, M. (2004). Asynchronous FIR filters: towards a new digital processing chain. In Proceedings of International Symposium on Asynchronous Circuits and Systems ASYNC 2004 (pp. 198–206).Google Scholar
- 6.Kinget, P. R., Lazar, A. A., & Toth, L. T. (2005). On the robustness of the VLSI implementation of a time encoding machine. In Proceedings of ISCAS 2005 (vol. 5, pp. 4221– 4224).Google Scholar
- 7.Kinniment, D., Yakovlev, A., & Gao, B. (2000). Synchronous and asynchronous A–D conversion. IEEE Transactions on VLSI Systems, 8(2), 217–220.CrossRefGoogle Scholar
- 8.Kinniment, D. J., & Yakovlev, A. V. (1999). Low power, low noise micropipelined flash A-D converter. In IEE Proceedings on Circuits Devices Systems, 146(5), 263–267.Google Scholar
- 9.Conti, M., Orcioni, S., Turchetti, C., & Biagetti, G. (1999). A current mode multistable memory using asynchronous successive approximation A/D converters. In Proceedings of IEEE International Conference on Electronics, Circuits and Systems ICECS’99 (vol. 1, pp.513–516).Google Scholar
- 10.Sayiner, N., Sorensen, H. V., & Viswanathan, T. R. (1996). A level-crossing sampling scheme for A/D conversion. IEEE Transactions on Circuits and Systems II, 43(4), 335–339.CrossRefGoogle Scholar
- 11.Roza, E. (1997). Analog-to-digital conversion via duty-cycle modulation. IEEE Transactions on Circuits and Systems-II, 44(11), 907–914.CrossRefGoogle Scholar
- 12.Miśkowicz, M. (2006). Send-on-delta concept: an event-based data reporting strategy. Sensors, 6(1), 49–63.CrossRefGoogle Scholar
- 13.Miśkowicz, M. (2005). Bandwidth requirements for event-driven observations of continuous-time variable. In V. Carre-Menetrier, X. R. Cao, & J. Zaytoon (Eds.), Discrete Event Systems 2004 (pp.465–470). Elsevier Science.Google Scholar
- 14.Miśkowicz, M. (2004). Adaptive event-triggered algorithms in distributed control network architectures (in Polish). PhD Thesis, AGH-UST, Kraków.Google Scholar
- 15.Lazar, A. A., & Tóth, L. T. (2005). Perfect recovery and sensitivity analysis of time encoded bandlimited signals. IEEE Transactions on Circuits and Systems-I, 51(10), 2060–2073.Google Scholar
- 16.Lazar, A. A., Simonyi, E. K., & Toth, L. T. (2005). Fast recovery algorithms of time encoded bandlimited signals. In Proceedings of International Conference on Acoustics, Speech and Signal Processing ICASSP 2005 (vol. 4, pp.237–240).Google Scholar
- 17.Lazar, A. A., Simonyi, E. K., & Toth, L. T. (2006) A real-time algorithm for time decoding machines. In Proceedings of European Signal Processing Conference EUSIPCO (2006).Google Scholar
- 18.Kirianaki, N. V., Yurish, S. Y., Shpak, N. O., & Deynega, V. P. (2002). Data acquisition and signal processing for smart sensors. John Wiley & Sons.Google Scholar
- 19.Das, J., & Sharma, P. (1967). Some asynchronous pulse-modulation systems. Electronics Letters, 3(6), 284–286.CrossRefGoogle Scholar
- 20.Kikkert, C. J., & Miller, D. J. (1975). Asynchronous delta sigma modulation. Proceedings of the IREE, 36, 83–88.Google Scholar
- 21.Dietrich, C. F. (1991). Uncertainty, calibration and probability: the statistics of scientific and industrial measurement (2nd ed.). Bristol: Adam Hilger.Google Scholar