Advertisement

Constructing Decidable Graphs from Decidable Structures

  • N. A. BazhenovEmail author
  • M. Harrison-Trainor
Article
  • 1 Downloads

It is shown that every structure (including one in an infinite language) can be transformed into a graph that is bi-interpretable with the original structure, for which the full elementary diagrams can be computed one from the other.

Keywords

decidable structure decidable graph bi-interpretable structures full diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, “Degree spectra and computable dimension in algebraic structures,” Ann. Pure Appl. Log., 115, Nos. 1-3, 71-113 (2002).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Montalbán, “Computability theoretic classifications for classes of structures” in Proc. of the Int. Congress of Math., ICM 2014 (Seoul, Korea, August 13–21, 2014), Vol. II: Invited Lectures, Sun Young Jang et al. (Eds.), KM Kyung Moon Sa, Seoul (2014), pp. 79-101.Google Scholar
  3. 3.
    W. Hodges, Model Theory, Enc. Math. Appl., 42, Cambridge Univ. Press, Cambridge (1993).Google Scholar
  4. 4.
    R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh, “A computable functor from graphs to fields,” J. Symb. Log., 83, No. 1, 326-348 (2018).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. S. Goncharov, “Problem of number of nonautoequivalent constructivizations,” Algebra and Logic, 19, No. 6, 401-414 (1980).MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations,” Algebra and Logic, 54, No. 6, 428-439 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Bazhenov, “Autostability spectra for decidable structures,” Math. Struct. Comput. Sci., 28, No. 3, 392-411 (2018).MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Harrison-Trainor, “There is no classification of the decidably presentable structures,” J. Math. Log., 18, No. 2 (2018), Article ID 1850010.MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Slaman, “Relative to any nonrecursive set,” Proc. Am. Math. Soc., 126, No. 7, 2117-2122 (1998).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Wehner, “Enumeration, countable structure and Turing degrees,” Proc. Am. Math. Soc., 126, No. 7, 2131-2139 (1998).MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. R. Hirschfeldt, “Computable trees, prime models, and relative decidability,” Proc. Am. Math. Soc., 134, No. 5, 1495-1498 (2006).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. S. Goncharov, “The quantity of nonautoequivalent constructivizations,” Algebra and Logic, 16, No. 3, 169-185 (1977).CrossRefGoogle Scholar
  13. 13.
    S. S. Goncharov, “Autostability and computable families of constructivizations,” Algebra and Logic, 14, No. 6, 392-409 (1975).CrossRefGoogle Scholar
  14. 14.
    O. Kudinov, “An autostable 1-decidable model without a computable Scott family of ∃-formulas,” Algebra and Logic35, No. 4, 255-260 (1996).MathSciNetCrossRefGoogle Scholar
  15. 15.
    U. Andrews and J. S. Miller, “Spectra of theories and structures,” Proc. Am. Math. Soc., 143, No. 3, 1283-1298 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    U. Andrews, M. Cai, D. Diamondstone, S. Lempp, and J. S. Miller, “Theory spectra and classes of theories,” Trans. Am. Math. Soc., 369, No. 9, 6493-6510 (2017).MathSciNetCrossRefGoogle Scholar
  17. 17.
    P. M. Semukhin, D. Turetsky, and E. B. Fokina, “Degree spectra of structures relative to equivalences,” Algebra and Logic58, No. 2, 158-172 (2019).CrossRefGoogle Scholar
  18. 18.
    A. Montalbán, “A fixed point for the jump operator on structures,” J. Symb. Log., 78, No. 2, 425-438 (2013).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu. L. Ershov, Definability and Computability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  20. 20.
    H. Gaifman, “On local and non-local properties,” Stud. Log. Found. Math., 107, 105-135 (1982).MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Montalbán, “Computable structure theory: Within the arithmetic”; https://math.berkeley.edu/antonio/CSTpart1.pdf.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations