Advertisement

Algebra and Logic

, Volume 58, Issue 2, pp 186–195 | Cite as

Read-Once Functions of the Algebra of Logic in Pre-Elementary Bases

  • I. K. SharankhaevEmail author
Article
  • 9 Downloads

Functions of the algebra of logic that can be realized by read-once formulas over finite bases are studied. Necessary and sufficient conditions are derived under which functions of the algebra of logic are read-once in pre-elementary bases {−, ·,∨, 0, 1, x1 · . . . · xn\( {\overline{x}}_1 \)· . . . · \( {\overline{x}}_n \)} and {−, ·,∨, 0, 1, x1(x2x3 · . . . · xn) ∨ x2\( {x}_2{\overline{x}}_3 \) · . . . · \( {\overline{x}}_n \)} where n ≥ 4. This completes the description of classes of read-once functions of the algebra of logic in all pre-elementary bases.

Keywords

functions of algebra of logic read-once function pre-elementary basis formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Subbotovskaya, “Comparison of bases for the realization by formulas of functions of an algebra of logic,” Dokl. Akad. Nauk SSSR, 149, No. 4, 784-787 (1963).MathSciNetzbMATHGoogle Scholar
  2. 2.
    D. Yu. Cherukhin, “Algorithmic criteria of comparison of Boolean bases,” in Mat. Vopr. Kiber., Iss. 8, 77-122 (1999).Google Scholar
  3. 3.
    I. K. Sharankhaev, “Realization of Boolean functions by repetition-free formulas in a particular base,” Sib. Math. J., 50, No. 1, 188-192 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. A. Peryazev, Elements of Theory of Boolean Functions [in Russian], Fizmatlit, Moscow (1999).Google Scholar
  5. 5.
    I. K. Sharankhaev, “On repetition-free Boolean functions over pre-elementary monotone bases,” Diskr. Mat., 21, No. 2, 88-93 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. D. Kirichenko, “Repetition-free criteria for Boolean functions in various bases,” in Optimization, Control, and Intellect [in Russian], Iss. 4, Irkutsk (2000), pp. 93-101.Google Scholar
  7. 7.
    K. D. Kirichenko, “Weakly repetition-containing Boolean functions in some pre-elementary base,” in Diskr. Mat. Inform., Iss. 13, Irkutsk University, Irkutsk (2000).Google Scholar
  8. 8.
    I. K. Sharankhaev, “On classification of bases of Boolean functions,” Vest. Buryat. Univer., Ser. 13, No. 3, 261-67 (2006).Google Scholar
  9. 9.
    N. A. Peryazev and I. K. Sharankhaev, “Criteria for Boolean functions to be repetition-free in pre-elementary bases of rank 3,” Diskr. Mat., 17, No. 2, 127-138 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    I. K. Sharankhaev, “On repetition-free Boolean functions in some bases,” Vest. Buryat. Univer., No. 9, 237-243 (2010).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ul. Smolina 24aUlan-UdeRussia

Personalised recommendations