Algebra and Logic

, Volume 58, Issue 2, pp 158–172 | Cite as

Degree Spectra of Structures Relative to Equivalences

  • P. M. SemukhinEmail author
  • D. Turetsky
  • E. B. Fokina

A standard way to capture the inherent complexity of the isomorphism type of a countable structure is to consider the set of all Turing degrees relative to which the given structure has a computable isomorphic copy. This set is called the degree spectrum of a structure. Similarly, to characterize the complexity of models of a theory, one may examine the set of all degrees relative to which the theory has a computable model. Such a set of degrees is called the degree spectrum of a theory. We generalize these two notions to arbitrary equivalence relations. For a structure \( \mathcal{A} \) and an equivalence relation E, the degree spectrum DgSp(\( \mathcal{A} \), E) of \( \mathcal{A} \) relative to E is defined to be the set of all degrees capable of computing a structure \( \mathcal{B} \) that is E-equivalent to \( \mathcal{A} \). Then the standard degree spectrum of \( \mathcal{A} \) is DgSp(\( \mathcal{A} \), ≅) and the degree spectrum of the theory of \( \mathcal{A} \) is DgSp(\( \mathcal{A} \), ≡). We consider the relations \( {\equiv}_{\sum_n} \) (\( \mathcal{A}{\equiv}_{\sum_n}\mathcal{B} \) iff the Σn theories of \( \mathcal{A} \) and \( \mathcal{B} \) coincide) and study degree spectra with respect to \( {\equiv}_{\sum_n} \).


degree spectrum of structure degree spectrum of theory degree spectrum of structure relative to equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Richter, “Degrees of structures,” J. Symb. Log., 46, No. 4, 723-731 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. F. Knight, “Degrees coded in jumps of orderings,” J. Symb. Log., 51, No. 4, 1034-1042 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. B. Fokina, V. Harizanov, and A. Melnikov, “Computable model theory,” in Turing’s Legacy: Developments from Turing’s Ideas in Logic, Lect. Notes Log., 42, R. Downey (ed.), Cambridge Univ. Press, Ass. Symb. Log., Cambridge (2014), pp. 124-194.Google Scholar
  4. 4.
    I. N. Soskov, “Degree spectra and co-spectra of structures,” God. Sofij. Univ., Fak. Mat. Inform., 96, 45-68 (2004).MathSciNetzbMATHGoogle Scholar
  5. 5.
    T. Slaman, “Relative to any nonrecursive,” Proc. Am. Math. Soc., 126, No. 7, 2117-2122 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Wehner, “Enumeration, countable structure and Turing degrees,” Proc. Am. Math. Soc., 126, No. 7, 2131-2139 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. Sh. Kalimullin, “Almost computably enumerable families of sets,” Mat. Sb., 199, No. 10, 33-40 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    N. Greenberg, A. Montalbán, and T. A. Slaman, “Relative to any non-hyperarithmetic set,” J. Math. Log., 13, No. 1, (2013), Article ID 1250007.Google Scholar
  9. 9.
    U. Andrews and J. S. Miller, “Spectra of theories and structures,” Proc. Am. Math. Soc., 143, No. 3, 1283-1298 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    L. Yu, “Degree spectra of equivalence relations,” in Proc. 13th Asian Logic Conf., ALC 2013 (Guangzhou, China, September 16-20, 2013), X. Zhao et al. (eds.), World Scientific, Hackensack, NJ (2015), pp. 237-242.Google Scholar
  11. 11.
    E. B. Fokina, D. Rossegger, and L. San Mauro, “Bi-embeddability spectra and bases of spectra,” to appear in Math. Log. Quart.Google Scholar
  12. 12.
    D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, “Degree spectra and computable dimension in algebraic structures,” Ann. Pure Appl. Log., 115, Nos. 1-3, 71-113 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, “Computability by probabilistic machines,” in Ann. Math. Stud., 34, C. E. Shannon and J. McCarthy (eds.), Princeton Univ. Press, Princeton, New Jersey (1956), pp. 183-214.Google Scholar
  14. 14.
    D. R. Hirschfeldt and W. M. White, “Realizing levels of the hyperarithmetic hierarchy as degree spectra of relations on computable structures,” Notre Dame J. Formal Logic, 43, No. 1, 51-64 (2002).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom
  2. 2.School of Mathematics and StatisticsUniversity of WellingtonWellingtonNew Zealand
  3. 3.Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations