Advertisement

Algebra and Logic

, Volume 58, Issue 2, pp 144–157 | Cite as

The Interpolation Problem in Finite-Layered Pre-Heyting Logics

  • L. L. MaksimovaEmail author
  • V. F. Yun
Article
  • 7 Downloads

The interpolation problem over Johansson’s minimal logic J is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a J-logic to possess Craig’s interpolation property (CIP). As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with CIP.

Keywords

finite-layered pre-Heyting logic Craig’s interpolation property Johansson algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus,” Compos. Math., 4, 119-136 (1937).zbMATHGoogle Scholar
  2. 2.
    G. D’Agostino, “μ-Levels of interpolation,” in Larisa Maksimova on Implication, Interpolation, and Definability, Outstanding Contrib. Log., 15, S. Odintsov (ed.), Springer (2018), pp. 155-170.Google Scholar
  3. 3.
    A. Karpenko, “Decidability of some interpolation properties for weakly transitive modal logics,” in Larisa Maksimova on Implication, Interpolation, and Definability, Outstanding Contrib. Log., 15, S. Odintsov (ed.), Springer (2018), pp. 171-183.Google Scholar
  4. 4.
    W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory,” J. Symb. Log., 22, No. 3, 269-285 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. L. Maksimova and V. F. Yun, “Extensions of the minimal logic and the interpolation problem,” Sib. Math. J., 59, No. 4, 681-693 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. L. Maksimova, “The decidability of Craig’s interpolation property in well-composed Jlogics,” Sib. Math. J., 53, No. 5, 839-852 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L. L. Maksimova, “Interpolation and the projective Beth property in well-composed logics,” Algebra and Logic, 51, No. 2, 163-184 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. L. Maksimova, “The projective Beth property in well-composed logics,” Algebra and Logic, 52, No. 2, 116-136 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L. L. Maksimova and V. F. Yun, “Recognizable logics,” Algebra and Logic, 54, No. 2, 167-182 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. P. Odintsov, “Logic of classical refutability and class of extensions of minimal logic,” Log. Log. Phil., 9, 91-107 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. P. Odintsov, Constructive Negations and Paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht (2008).Google Scholar
  12. 12.
    L. L. Maksimova, “Craig’s interpolation theorem and amalgamable varieties,” Dokl. Akad. Nauk SSSR, 237, No. 6, 1281-1284 (1977).MathSciNetzbMATHGoogle Scholar
  13. 13.
    L. Maksimova, “Restricted interpolation in modal logics,” in Adv. Modal Log., 4, King’s Coll. Publ., London (2003), pp. 297-311.Google Scholar
  14. 14.
    L. L. Maksimova, “Decidability of the weak interpolation property over the minimal logic,” Algebra and Logic, 50, No. 2, 106-132 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Maksimova, “Problem of restricted interpolation in superintuitionistic and some modal logics,” Log. J. IGPL, 18, No. 3, 367-380 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    L. L. Maksimova, “Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras,” Algebra and Logic, 16, No. 6, 427-455 (1977).CrossRefzbMATHGoogle Scholar
  17. 17.
    L. L. Maksimova, “Implicit definability and positive logics,” Algebra and Logic, 42, No. 1, 37-53 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. L. Maksimova, “Intuitionistic logic and implicit definability,” Ann. Pure Appl. Log., 105, Nos. 1-3, 83-102 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L. L. Maksimova and V. F. Yun, “Layers over minimal logic,” Algebra and Logic, 55, No. 4, 295-305 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    K. Segerberg, “Propositional logics related to Heyting’s and Johansson’s,” Theoria, 34, 26-61 (1968).MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. L. Maksimova, “Pretable superintuitionistic logics,” Algebra and Logic, 11, No. 5, 308-314 (1972).CrossRefGoogle Scholar
  22. 22.
    D. M. Gabbay and L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford (2005).CrossRefzbMATHGoogle Scholar
  23. 23.
    L. L. Maksimova and V. F. Yun, “Interpolation over the minimal logic and Odintsov intervals,” Sib. Math. J., 56, No. 3, 476-489 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    L. L. Maksimova, “Negative equivalence over the minimal logic and interpolation,” Sib. El. Mat. Izv., 11, 1-17 (2014); http://semr.math.nsc.ru/v11/p1-17/pdf.MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. I. Mal’tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State University, ulNovosibirskRussia

Personalised recommendations