Advertisement

Algebra and Logic

, Volume 58, Issue 2, pp 137–143 | Cite as

Maximality of the Countable Spectrum in Small Quite o-Minimal Theories

  • B. Sh. KulpeshovEmail author
Article
  • 7 Downloads

We give a criterion for the countable spectrum to be maximal in small binary quite o-minimal theories of finite convexity rank.

Keywords

weak o-minimality quite o-minimality countable spectrum convexity rank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Macpherson, D. Marker, and Ch. Steinhorn, “Weakly o-minimal structures and real closed fields,” Trans. Am. Math. Soc., 352, No. 12, 5435-5483 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates,” J. Symb. Log., 66, No. 3, 1382-1414 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Sh. Kulpeshov, “The convexity rank and orthogonality in weakly o-minimal theories,” Izv. NAN RK, Ser. Fiz.-Mat., No. 227, 26-31 (2003).Google Scholar
  4. 4.
    B. Sh. Kulpeshov and S. V. Sudoplatov, “Vaught’s conjecture for quite o-minimal theories,” Ann. Pure Appl. Log., 168, No. 1, 129-149 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. L. Mayer, “Vaught’s conjecture for o-minimal theories,” J. Symb. Log., 53, No. 1, 146-159 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. S. Baizhanov, “One-types in weakly o-minimal theories,” in Proc. Inf. Control Problems Inst., Almaty, 75-88 (1996).Google Scholar
  7. 7.
    B. S. Baizhanov and B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly o-minimal theories,” in Mathematical Logic in Asia, Proc. 9th Asian Logic Conf. (Novosibirsk, Russia, August 16-19, 2005), S. S. Goncharov et al. (eds.), World Scientific, Hackensack, NJ (2006), pp. 31-40.Google Scholar
  8. 8.
    B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties,” J. Symb. Log., 63, No. 4, 1511-1528 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B. Sh. Kulpeshov, “Countably categorical quite o-minimal theories,” Vestnik NGU, Mat., Mekh., Inf., 11, No. 1, 45-57 (2011).zbMATHGoogle Scholar
  10. 10.
    B. Sh. Kulpeshov, “Criterion for binarity of 0-categorical weakly o-minimal theories,” Ann. Pure Appl. Log., 145, No. 3, 354-367 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    K. Ikeda, A. Pillay, and A. Tsuboi, “On theories having three countable models,” Math. Log. Q., 44, No. 2, 161-166 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. V. Sudoplatov, Classification of Countable Models of Complete Theories, Part 1, Novosibirsk, Novosibirsk State Tech. Univ. (2014).Google Scholar
  13. 13.
    S. V. Sudoplatov, Classification of Countable Models of Complete Theories, Part 2, Novosibirsk, Novosibirsk State Tech. Univ. (2014).Google Scholar
  14. 14.
    B. Sh. Kulpeshov and S. V. Sudoplatov, “Linearly ordered theories which are nearly countably categorical,” Mat. Zametki, 101, No. 3, 413-424 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Information Technologies UniversityAlma-AtaKazakhstan
  2. 2.Institute of Mathematics and Mathematical ModelingMinistry of Education and Science RKAlma-AtaKazakhstan
  3. 3.Kazakh-British Technical UniversityAlma-AtaKazakhstan

Personalised recommendations