Algebra and Logic

, Volume 58, Issue 2, pp 115–122 | Cite as

Generalized Wreath Products of m-Groups

  • A. V. ZenkovEmail author
  • O. V. Isaeva

The concept of a generalized wreath product of permutation m-groups is introduced, and it is proved that an m-transitive permutation group embeds into a generalized wreath product of its primitive components.


m-group m-transitive representation primitive component generalized wreath product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Giraudet and J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains,” Czech. Math. J., 49, No. 4, 743-766 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. G. Kurosh, Group Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    V. M. Kopytov and N. Ya. Medvedev, The Theory of Lattice-Ordered Groups, Kluwer, Dordrecht (1994).CrossRefzbMATHGoogle Scholar
  4. 4.
    V. M. Kopytov, Lattice-Ordered Groups [in Russian], Nauka, Moscow (1984).Google Scholar
  5. 5.
    A. V. Zenkov, “On congruences of m-groups,” Sib. Math. J., 54, No. 6, 1018-1022 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. V. Zenkov and O. V. Isaeva, “Two questions in the theory of m-groups,” Sib. Math. J., 55, No. 6, 1042-1044 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. M. Kopytov and J. Rachunek, “The greatest proper variety of m-groups,” Algebra and Logic, 42, No. 5, 349-355 (2003).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Altai State Agricultural UniversityBarnaulRussia
  2. 2.Altai State UniversityBarnaulRussia

Personalised recommendations