# Generating Triples of Involutions of Groups of Lie Type of Rank 2 Over Finite Fields

Article

First Online:

- 12 Downloads

For finite simple groups U_{5}(2^{n}), n > 1, U_{4}(q), and S_{4}(q), where *q* is a power of a prime *p* > 2, *q* − 1 ≠= 0(mod4), and *q* ≠= 3, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals 1, is equal to 5.

## Keywords

group of Lie type finite simple group generating triples of involutions## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Ya. N. Nuzhin, “Generating triples of involutions for alternating groups,”
*Mat. Zametki*,**51**, No. 4, 91-95 (1992).MathSciNetzbMATHGoogle Scholar - 2.Ya. N. Nuzhin, “Generating triples of involutions for Chevalley groups over a finite field of characteristic 2,”
*Algebra and Logic*,**29**, No. 2, 134-143 (1990).MathSciNetCrossRefzbMATHGoogle Scholar - 3.Ya. N. Nuzhin, “Generating triples of involutions for Lie-type groups over a finite field of odd characteristic. I,”
*Algebra and Logic*,**36**, No. 1, 46-59 (1997).MathSciNetCrossRefzbMATHGoogle Scholar - 4.Ya. N. Nuzhin, “Generating triples of involutions for Lie-type groups over a finite field of odd characteristic. II,”
*Algebra and Logic*,**36**, No. 4, 245-256 (1997).Google Scholar - 5.V. D. Mazurov, “On generation of sporadic simple groups by three involutions two of which commute,”
*Sib. Math. J.*,**44**, No. 1, 160-164 (2003).MathSciNetCrossRefzbMATHGoogle Scholar - 6.J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*Atlas of Finite Groups*, Clarendon Press, Oxford (1985).Google Scholar - 7.
*Unsolved Problems in Group Theory, The Kourovka Notebook*, No. 19, Institute of Mathematics SO RAN, Novosibirsk (2018); http://www.math.nsc.ru/*∼*alglog/19tkt.pdf. - 8.J. M. Ward, Generation of simple groups by conjugate involutions, PhD Thesis, Queen Mary college, Univ. London (2009).Google Scholar
- 9.E. S. Rapaport, “Cayley color groups and Hamilton lines,”
*Scripta Math.*,**24**, 51-58 (1959).MathSciNetzbMATHGoogle Scholar - 10.I. Pak and R. Radoiˇci´c, “Hamiltonian paths in Cayley graphs,”
*Discr. Math.*,**309**, No. 17, 5501-5508 (2009).MathSciNetCrossRefzbMATHGoogle Scholar - 11.G. A. Jones, “Automorphism groups of edge-transitive maps,” arXiv:1605.09461 [math.CO].Google Scholar
- 12.M. Maˇcaj, “On minimal kaleidoscopic regular maps with trinity symmetry,”
*The Seventh Workshop Graph Embeddings and Maps on Surfaces, Abstracts*, Podbanske, Slovakia (2017).Google Scholar - 13.
- 14.L. E. Dickson,
*Linear Groups with an Exposition of the Galois Field Theory*, B. G. Teubner, Leipzig (1901).zbMATHGoogle Scholar - 15.D. Gorenstein,
*Finite Groups*, Harper and Row, New York (1968).Google Scholar - 16.Ya. N. Nuzhin, “Generating sets of elements of Chevalley groups over a finite field,”
*Algebra and Logic*,**28**, No. 6, 438-449 (1989).MathSciNetCrossRefzbMATHGoogle Scholar - 17.V. M. Levchuk, “Remark on a theorem of L. Dickson,”
*Algebra and Logic*,**22**, No. 4, 306-316 (1983).MathSciNetCrossRefzbMATHGoogle Scholar - 18.Ya. N. Nuzhin, “Groups contained between groups of Lie type over various fields,”
*Algebra and Logic*,**22**, No. 5, 378-389 (1983).MathSciNetCrossRefzbMATHGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019