Advertisement

Algebra and Logic

, Volume 57, Issue 5, pp 353–359 | Cite as

Criteria for the Validity of Goldie’s Theorems for Graded Rings

  • A. L. Kanunnikov
Article

We specify conditions on a group G that are necessary and sufficient for analogs of Goldie’s theorems to hold in a class of G-graded rings, i.e., for every G-graded gr-prime (gr-semiprime) right Goldie ring to possess a completely gr-reducible graded classical right ring of quotients.

Keywords

graded Goldie rings graded rings of quotients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Năstăsescu and F. van Oystaeyen, Methods of Graded Rings, Lect. Notes Math., 1836, Springer-Verlag, Berlin (2004).CrossRefGoogle Scholar
  2. 2.
    A. W. Goldie, “Semi-prime rings with maximum condition,” Proc. London Math. Soc., III Ser., 10, 201-220 (1960).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. E. Johnson, “Quotient rings of rings with zero singular ideal,” Pac. J. Math., 11, No. 4, 1385-1392 (1961).MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Năstăsescu and F. van Oystaeyen, Graded and Filtered Rings and Modules, Lect. Notes Math., 758, Springer-Verlag, Berlin (1979).CrossRefGoogle Scholar
  5. 5.
    A. L. Kanunnikov, “Graded versions of Goldie’s theorem,” Vest. MGU, Ser. 1, Mat. Mekh. No. 3, 46-50 (2011).Google Scholar
  6. 6.
    D. S. Bazhenov, “Graded prime Goldie rings,” Vest. MGU, Ser. 1, Mat. Mekh. No. 2, 55-57 (2017).Google Scholar
  7. 7.
    K. Goodearl and J. T. Stafford, “The graded version of Goldie’s theorem,” in Contemp. Math., 259, Am. Math. Soc., Providence, RI (2000), pp. 237-240.Google Scholar
  8. 8.
    A. L. Kanunnikov, “Graded versions of Goldie’s theorem, II,” Vest. MGU, Ser. 1, Mat. Mekh. No. 3, 47-51 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations