Algebra and Logic

, Volume 56, Issue 4, pp 337–347 | Cite as

Universal Generalized Computable Numberings and Hyperimmunity

  • M. Kh. FaizrakhmanovEmail author

Generalized computable numberings relative to hyperimmune and high oracles are studied. We give a description of oracles relative to which every finite computable family has a universal computable numbering. Also we present a characterization of the class of oracles relative to which every universal computable numbering of an arbitrary finite family is precomplete, and establish a sufficient condition for universal generalized computable numberings to be precomplete. In addition, we look into the question on limitedness of universal numberings computable relative to high oracles.


generalized computable numbering universal numbering precomplete numbering hyperimmune set high set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. A. Badaev and S. S. Goncharov, “Theory of numberings: Open problems,” in Computability Theory and Its Applications, Cont. Math., 257, Am. Math. Soc., Providence, RI (2000), pp. 23-38.Google Scholar
  3. 3.
    S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11-44.CrossRefGoogle Scholar
  4. 4.
    S. Yu. Podzorov, “The limit property of the greatest element in the Rogers semilattice,” Math. Trudy, 7, No. 2, 98-108 (2004).zbMATHMathSciNetGoogle Scholar
  5. 5.
    S. A. Badaev and S. S. Goncharov, “Computability and numberings,” in New ComputationalParadigms, S. B. Cooper, B. Lowe, and A. Sorbi (eds.), Springer, New York (2008), pp. 19-34.Google Scholar
  6. 6.
    S. A. Badaev and S. S. Goncharov, “Generalized computable universal numberings,” Algebra and Logic, 53, No. 5, 355-364 (2014).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Yu. L. Ershov, Theory of Numerations [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    Yu. L. Ershov, “Theory of numberings,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, North-Holland, Amsterdam (1999), pp. 473-503.Google Scholar
  9. 9.
    R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Log., Omega Ser., Springer-Verlag, Heidelberg (1987).CrossRefGoogle Scholar
  10. 10.
    S. A. Badaev and A. A. Isakhov, “A-computable numberings,” Mal’tsev Readings, (2015), p. 61.Google Scholar
  11. 11.
    A. I. Mal’tsev, “Sets with complete numberings,” Algebra Logika, 2, No. 2, 4-29 (1963).MathSciNetGoogle Scholar
  12. 12.
    C. G. Jockusch, Jr., “Degrees in which the recursive sets are uniformly recursive,” Can. J. Math., 24, 1092-1099 (1972).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations