Advertisement

Algebra and Logic

, Volume 56, Issue 2, pp 133–148 | Cite as

Universal Equivalence of Partially Commutative Lie Algebras

  • E. N. PoroshenkoEmail author
Article
  • 23 Downloads

We study universal theories of partially commutative Lie algebras whose defining graphs are cycles and trees. Within each of the two above-mentioned classes of partially commutative Lie algebras, necessary and sufficient conditions for the coincidence of universal theories are specified.

Keywords

partially commutative Lie algebra defining graph universal theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Duchamp and D. Krob, “Free partially commutative structures,” J. Alg., 156, No. 2, 318-361 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H. Servatius, “Automorphisms of graph groups,” J. Alg., 126, No. 1, 34-60 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Duchamp and D. Krob, “The lower central series of the free partially commutative group,” Semigr. Forum, 45, No. 3, 385-394 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. J. Duncan, I. V. Kazachkov, and V. N. Remeslennikov, “Parabolic and quasiparabolic subgroups of free partially commutative groups,” J. Alg., 318, No. 2, 918-932 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ch. K. Gupta and E. I. Timoshenko, “Partially commutative metabelian groups: Centralizers and elementary equivalence,” Algebra and Logc, 48, No. 3, 173-192 (2009).Google Scholar
  6. 6.
    E. I. Timoshenko, “Universal equivalence of partially commutative metabelian groups,” Algebra and Logic, 49, No. 2, 177-196 (2010).Google Scholar
  7. 7.
    E. I. Timoshenko, “A Mal’tsev basis for a partially commutative nilpotent metabelian group,” Algebra and Logic, 50, No. 5, 439-446 (2011).Google Scholar
  8. 8.
    Ch. K. Gupta and E. I. Timoshenko, “Universal theories for partially commutative metabelian groups,” Algebra and Logc, 50, No. 1, 1-16 (2011).Google Scholar
  9. 9.
    F. Cartier and D. Foata, Probl`emes Combinatoires de Commutation et R´earrangements, Lect. Notes Math., 85, Springer-Verlag, Berlin (1969).Google Scholar
  10. 10.
    K. Hang Kim, L. Makar-Limanov, J. Neggers, and F. W. Roush, “Graph algebras,” J. Alg., 64, 46-51 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    G. Duchamp and D. Krob, “The free partially commutative Lie algebra: Bases and ranks,” Adv. Math., 92, No. 1, 95-126 (1992).MathSciNetzbMATHGoogle Scholar
  12. 12.
    E. N. Poroshenko, “Bases for partially commutative Lie algebras,” Algebra and Logic, 50, No. 5, 405-417 (2011).Google Scholar
  13. 13.
    E. N. Poroshenko, “Centralizers in partially commutative Lie algebras,” Algebra and Logic, 51, No. 4, 351-371 (2012).Google Scholar
  14. 14.
    E. N. Poroshenko and E. I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras,” J. Alg., 384, 143-168 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. N. Poroshenko, “On universal equivalence of partially commutative metabelian Lie algebras,” Comm. Alg., 43, No. 2, 746-762 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Hall, “A basis for free Lie rings and higher commutators in free groups,” Proc. Am. Math. Soc., 1, 575-581 (1950).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. I. Shirshov, “Subalgebras of free Lie algebras,” Mat. Sb., 33(75), No. 2, 441-452 (1953).Google Scholar
  18. 18.
    A. I. Shirshov, “On free Lie rings,” Mat. Sb., 45(87), No. 2, 113-122 (1958).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations