Advertisement

Algebra and Logic

, Volume 55, Issue 4, pp 289–294 | Cite as

Periodic Groups Saturated with Finite Simple Groups of Types U 3 and L 3

  • D. V. LytkinaEmail author
  • A. A. Shlepkin
Article

Suppose that \( \mathfrak{M} \) is a set whose elements are simple three-dimensional unitary groups U 3(q) and linear groups L 3(q) over finite fields. We prove that a periodic group saturated with groups of \( \mathfrak{M} \) is locally finite and isomorphic to U 3(Q) or L 3(Q) for some locally finite field Q.

Keywords

group saturated with set of groups periodic group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Lytkina, L. R. Tukhvatullina, and K. A. Filippov, “Periodic groups saturated by finite set of finite simple groups,” Sib. Math. J., 49, No. 2, 317-321 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. V. Lytkina, “Groups saturated by finite simple groups,” Algebra and Logic, 48, No. 5, 357-370 (2009).Google Scholar
  3. 3.
    J. L. Alperin, R. Brauer, and D. Gorenstein, “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups,” Trans. Am. Math. Soc., 151, No. 1, 1-261 (1970).MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge (2013).Google Scholar
  5. 5.
    J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).Google Scholar
  6. 6.
    A. Kh. Zhurtov, “Regular automorphisms of order 3 and Frobenius pairs,” Sib. Math. J., 41, No. 2, 268-275 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. V. Borovik, “Embeddings of finite Chevalley groups and periodic linear groups,” Sib. Math. J., 24, No. 6, 843-851 (1983).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations