Algebra and Logic

, Volume 55, Issue 4, pp 257–273 | Cite as

Degrees of Autostability for Linear Orders and Linearly Ordered Abelian Groups

  • N. A. BazhenovEmail author

It is proved that every computable ordinal has a degree of autostability. We construct new examples of degrees of autostability in the class of linear orders and in the class of linearly ordered Abelian groups.


autostability computable categoricity index set linear order autostability spectrum categoricity spectrum degree of autostability degree of categoricity ordered Abelian group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51-67 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    B. F. Csima, J. N. Y. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Form. Log., 54, No. 2, 215-231 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119-129 (2011).MathSciNetzbMATHGoogle Scholar
  4. 4.
    D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures,” Ann. Pure Appl. Log., 115, Nos. 1-3, 71-113 (2002).Google Scholar
  5. 5.
    R. Miller, “d-Computable categoricity for algebraic fields,” J. Symb. Log., 74, No. 4, 1325-1351 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. Miller and A. Shlapentokh, “Computable categoricity for algebraic fields with splitting algorithms,” Trans. Am. Math. Soc., 367, No. 6, 3955-3980 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    B. Anderson and B. Csima, “Degrees that are not degrees of categoricity,” Notre Dame J. Form. Log., 57, No. 3, 389-398 (2016).MathSciNetzbMATHGoogle Scholar
  8. 8.
    E. Fokina, A. Frolov, and I. Kalimullin, “Categoricity spectra for rigid structures,” Notre Dame J. Form. Log., 57, No. 1, 45-57 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. A. Bazhenov, “Δ20 -categoricity of Boolean algebras,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 2, 3-14 (2013).Google Scholar
  10. 10.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra and Logic, 19, No. 1, 28-36 (1980).Google Scholar
  11. 11.
    J. B. Remmel, “Recursively categorical linear orderings,” Proc. Am. Math. Soc., 83, No. 2, 387-391 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    C. McCoy, “Δ20 -categoricity in Boolean algebras and linear orderings,” Ann. Pure Appl. Log., 119, Nos. 1-3, 85-120 (2003).Google Scholar
  13. 13.
    Ch. F.D. McCoy, “Partial results in Δ30 -categoricity in linear orderings and Boolean algebras,” Algebra and Logic, 41, No. 5, 295-305 (2002).Google Scholar
  14. 14.
    C. J. Ash, “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees,” Trans. Am. Math. Soc., 298, No. 2, 497-514 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  16. 16.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., 144, Elsevier, Amsterdam (2000).Google Scholar
  17. 17.
    J. C. Rosenstein, Linear Orderings, Pure Appl. Math., 98, Academic Press, New York (1982).Google Scholar
  18. 18.
    R. G. Downey, “Computability theory and linear orderings,” in Handbook of Recursive Mathematics, Stud. Log. Found. Math., 139, Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Elsevier, Amsterdam (1998), pp. 823-976.Google Scholar
  19. 19.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).Google Scholar
  20. 20.
    C. Ash, J. Knight, M. Manasse, and T. Slaman, “Generic copies of countable structures,” Ann. Pure Appl. Log., 42, No. 3, 195-205 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. J. Ash and J. F. Knight, “Pairs of recursive structures,” Ann. Pure Appl. Log., 46, No. 3, 211-234 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    N. A. Bazhenov, “Degrees of categoricity for superatomic Boolean algebras,” Algebra and Logic, 52, No. 3, 179-187 (2013).Google Scholar
  23. 23.
    S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems,” Algebra and Logic, 41, No. 6, 351-373 (2002).Google Scholar
  24. 24.
    W. M. White, “On the complexity of categoricity in computable structures,” Math. Log. Q., 49, No. 6, 603-614 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    C. J. Ash, “Categoricity in hyperarithmetical degrees,” Ann. Pure Appl. Log., 34, No. 1, 1-14 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    N. A. Bazhenov, “Autostability spectra for Boolean algebras,” Algebra and Logic, 53, No. 6, 502-505 (2014).Google Scholar
  27. 27.
    A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka, Moscow (1972).Google Scholar
  28. 28.
    A. G. Melnikov, “Computable ordered abelian groups and fields,” in Programs, Proofs, Processes, Lect. Notes Comp. Sci., 6158, Springer, Berlin (2010), pp. 321-330.Google Scholar
  29. 29.
    A. G. Mel’nikov, “Effective properties of completely decomposable Abelian groups,” Cand. Sci. Dissertation, NGU, Novosibirsk (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations