Algebra and Logic

, Volume 55, Issue 2, pp 173–177 | Cite as

Degrees of Categoricity vs. Strong Degrees of Categoricity

  • N. A. Bazhenov
  • I. Sh. Kalimullin
  • M. M. Yamaleev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51-67 (2010).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    B. F. Csima, J. N. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Form. Log., 54, No. 2, 215-231 (2013).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Miller, “d-Computable categoricity for algebraic fields,” J. Symb. Log., 74, No. 4, 1325-1351 (2009).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    B. A. Anderson and B. F. Csima, “Degrees that are not degrees of categoricity,” to appear in Notre Dame J. Form. Log..Google Scholar
  5. 5.
    N. A. Bazhenov, “Autostability spectra for Boolean algebras,” Algebra and Logic, 53, No. 6, 502-505 (2015).Google Scholar
  6. 6.
    E. Fokina, A. Frolov, and I. Kalimullin, “Categoricity spectra for rigid structures,” Notre Dame J. Form. Log., 57, No. 1, 45-57 (2016).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. A. Bazhenov
    • 1
    • 2
    • 3
  • I. Sh. Kalimullin
    • 3
  • M. M. Yamaleev
    • 3
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations