Algebra and Logic

, Volume 55, Issue 2, pp 87–102 | Cite as

Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras


It is proved that for every computable ordinal α, the Turing degree 0(α) is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is ∏11-complete.


autostability Boolean algebra autostability relative to strong constructivizations degree of autostability degree of categoricity index set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51-67 (2010).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    B. F. Csima, J. N. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Formal Log., 54, No. 2, 215-231 (2013).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119-129 (2011).MathSciNetMATHGoogle Scholar
  4. 4.
    C. J. Ash, “Categoricity in hyperarithmetical degrees,” Ann. Pure Appl. Log., 34, No. 1, 1-14 (1987).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    N. A. Bazhenov, “Degrees of categoricity for superatomic Boolean algebras,” Algebra and Logic, 52, No. 3, 179-187 (2013).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    N. A. Bazhenov, “Hyperarithmetical categoricity of the Boolean algebra B(ω α ×η),” Vestnik NGU, Mat., Mekh., Inf., 12, No. 3, 35-45 (2012).MATHGoogle Scholar
  7. 7.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Siberian School of Algebra and Logic [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  8. 8.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier, Amsterdam (2000).MATHGoogle Scholar
  9. 9.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  10. 10.
    S. S. Goncharov, “Constructivizability of superatomic Boolean algebras,” Algebra and Logic, 12, No. 1, 17-22 (1973).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    J. Harrison, “Recursive pseudo well-orderings,” Trans. Am. Math. Soc., 131, No. 2, 526-543 (1968).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yu. L. Ershov, “Decidability of the elementary theory of distributive structures with relative complements and of the filter theory,” Algebra Logika, 3, No. 3, 17-38 (1964).MathSciNetMATHGoogle Scholar
  13. 13.
    P. E. Alaev, “Hyperarithmetical Boolean algebras with a distinguished ideal,” Sib. Math. J., 45, No. 5, 795-805 (2004).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).MATHGoogle Scholar
  15. 15.
    C. J. Ash, J. F. Knight, M. S. Manasse, and T. A. Slaman, “Generic copies of countable structures,” Ann. Pure Appl. Logic, 42, No. 3, 195-205 (1989).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J. Chisholm, “Effective model theory vs. recursive model theory,” J. Symb. Log., 55, No. 3, 1168-1191 (1990).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    C. J. Ash and J. F. Knight, “Pairs of recursive structures,” Ann. Pure Appl. Log., 46, No. 3, 211-234 (1990).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra and Logic, 19, No. 1, 28-37 (1980).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    G. E. Sacks, Higher Recursion Theory, Springer, Berlin (1990).CrossRefMATHGoogle Scholar
  20. 20.
    S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems,” Algebra and Logic, 41, No. 6, 351-373 (2002).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    E. B. Fokina, “Index sets of decidable models,” Sib. Math. J., 48, No. 5, 939-948 (2007).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    W. White, “On the complexity of categoricity in computable structures,” Math. Log. Quart., 49, No. 6, 603-614 (2003).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations