Algebra and Logic

, Volume 54, Issue 6, pp 489–501 | Cite as

Comparing Classes of Finite Sums

  • U. Andrews
  • D. I. Dushenin
  • C. Hill
  • J. F. Knight
  • A. G. Melnikov

The notion of Turing computable embedding is a computable analog of Borel embedding. It provides a way to compare classes of countable structures, effectively reducing the classification problem for one class to that for the other. Most of the known results on nonexistence of Turing computable embeddings reflect differences in the complexity of the sentences needed to distinguish among nonisomorphic members of the two classes. Here we consider structures obtained as sums. It is shown that the n-fold sums of members of certain classes lie strictly below the (n+1)-fold sums. The differences reflect model-theoretic considerations related to Morley degree, not differences in the complexity of the sentences that describe the structures. We consider three different kinds of sum structures: cardinal sums, in which the components are named by predicates; equivalence sums, in which the components are equivalence classes under an equivalence relation; and direct sums of certain groups.


Turing computable embedding classes of finite sums Morley degree complexity of sentences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Friedman and L. Stanley, “On Borel reducibility theory for classes of computable structures,” J. Symb. Log., 54, No. 3, 894–914 (1989).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    W. Calvert, D. Cummins, J. F. Knight, and S. Miller, “Comparing classes of finite structures,” Algebra and Logic, 43, No. 6, 374–392 (2004).Google Scholar
  3. 3.
    E. B. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn, and C. M. Safranski, “Classes of Ulm type and coding rank-homogeneous trees in other structures,” J. Symb. Log., 76, No. 3, 846–869 (2011).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. F. Knight, S. Miller, and M. Vanden Boom, “Turing computable embeddings,” J. Symb. Log., 72, No. 3, 901–918 (2007).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C. Maher, “On embeddings of computable structures, classes of structures, and computable isomorphism,” Ph. D. Thesis, Univ. Notre Dame (2009).Google Scholar
  6. 6.
    E. B. Fokina and S.-D. Friedman, “On Σ1 1 equivalence relations over the natural numbers,” Math. Log. Q., 58, Nos. 1/2, 113–124 (2012).Google Scholar
  7. 7.
    E. B. Fokina, S.-D. Friedman, V. Harizanov, J. F. Knight, C. McCoy, and A. Montalbán, “Isomorphism relations on computable structures,” J. Symb. Log., 77, No. 1, 122–132 (2012).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    W. Calvert, “The isomorphism problem for computable Abelian p-groups of bounded length,” J. Symb. Log., 70, No. 1, 331–345 (2005).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    W. Calvert, V. S. Harizanov, J. F. Knight, and S. Miller, “Index sets of computable structures,” Algebra and Logic, 45, No. 5, 306–325 (2006).Google Scholar
  10. 10.
    H. Becker, “Isomorphism of computable structures and Vaught’s Conjecture,” J. Symb. Log., 78, No. 4, 1328–1344 (2013).CrossRefMATHGoogle Scholar
  11. 11.
    A. Montalb’an, “A computability theoretic equivalent to Vaught’s Conjecture,” Preprint.Google Scholar
  12. 12.
    I. Kaplansky, Infinite Abelian Groups, Univ. Michigan Publ. Math., 2, Univ. Michigan Press, Ann Arbor (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • U. Andrews
    • 1
  • D. I. Dushenin
    • 2
  • C. Hill
    • 3
  • J. F. Knight
    • 4
  • A. G. Melnikov
    • 5
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA
  2. 2.SNIIGGiMSNovosibirskRussia
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of MathematicsUniv. Notre DameNotre DameUSA
  5. 5.Institute of Natural and Mathematical SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations